it ot b

AFUSK - LK - oY- 1v3o (>

G%{AD UATE <AER’ON'AUTICAL LABORA.TORIES

CALIFORNIA INSTITUTE OF TTECHNC)LOGY

ol
&N Chemical Reactions in Turbulent Mixing Flows
g
f:: Paul <. Dimotakis®. James E. Broadwell** and Anthony Leonard!
(q V!
| . o
Q Air “orce Office of Scientific Research
Grant No. 83-0213
q k Final Report for the period ending 31 December 198¢
"1 June 1989
" ‘..“ !‘: lln\'-‘.
\\ ,;.": A L‘( ‘1%:.'.#
\ L __CTE \
“any AWGD 01988
Y 1)
. mY A&
Firestone Flight Sciences Laboratory Wk E
o .
Guor~enheim Aerc nautical Laboratory
Karman Laboratory of Fluid Mechanics and ]2t Propulsion
[f0a 4l ~emt Berr beaw GPPIOY
Vive ead .y ratecve wnd salsg I8
] Li..a:i". At A unllzdhl ',"q"' ‘
) .
Fasadena

89 8 8 117



Unclassified ’ ¢ R .
URITY CLASSIFICATION OF THIS PAGE 3
—

REPORT DOCUMENTATION PAGE

1

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None.

]

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPCAT

Approved for public release;
distribution is unlirited.

4. PERFO MING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOBR-TK- £ 3-1035

6b. OFFICE SYMBOL
(If applicadle)

6a. NAM: OF PERFORMING ORGANIZATIO
Califo>rnia Institute of
fechnology

7a. NAME OF MONITORING ORGANIZAT! IN

AFOSR/NA

¥6C ADC 55 (Gity, State, and ZIP Code)

Pasadena, California 91125

7b. ADDRESS (City, State, and ZIP Code)

Building 410, Bolling AFB DC
20332-6448

% 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFI ATION NUMBER
ORG NIZATION (!f applicabl AFO R £3-02\3
, -
AF SR/NA /‘/‘4 7% &5
8c. ADD. $S(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

v

i

Builc ing 410, Bolling 2FB DC
2033.-6448

PROGRAM PROJECT TASK WORK_UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
61102F 2308 1.2

4 (U) Chemical Reactions in Turbulent Mixing Flows

! 11. TITLE (include Securrity Classification)

*12. PERSCHAL AUTHOR(S)

s
Py

Paul E. Dimotakis, James E. Broadwell, Anthony Leonard

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Mo 1, Day)

15. PAGE COUNT

Fina: Scientific FROM 10_J2488~ 1589, June, 1 131
16. SUPPLEMENTARY NOTATION %%/m'
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary ¢nd identify by block number)
FIELC GROUP SUB-GROUP
20 04 Turbulence, shear flow. combustion
21 01

flows.

st
layers and axi:ymmetric jets.

theory concern themselves with both liquids and gases.
on both shear layers and turbulent jets, with an effort to include the physics Hf the

19. Aﬁaﬂ {Continue cn reverse if necessary and identify by block number)

" ->The purpos~ of this research has been to conduct fundamental inve:
mixing, chemic:l reaction and combustion processes in turbulent, subsc

Progre: s in this effort thus far has uncovered important defic

modeling of the~z phenomena, and offered alternative suggestions and f

some of these d ficiences. This program is comprised of an experiment:

modeling effort, a computational effort, and a diagnostics development
effort, the latter as dictated by specific needs of our experimeats.

Our approach has been to carry out a series of detailed theoretical and exp
ies primar:'ly in two, well-defined, fundamentally important flow fields: f
‘To elucidate molecular transport effects, experi

igations of turbulent
ic and supersonic
ancies in conventiona
rmulations to addre
effort, an analytical

and datez acquisition
rimental
«e shear
ents and

Modeling efforts have = en focused

(concinued on back of this yage) N |
20. DISTRIBUTION / AVAILABILITY OF ABSTRAC ' C.'J/ 21, ABSTRACT SECURITY CLASSIFICATION \<
3 UNCLASSIFIEDAUNUMITED (@ SAME A: RPT. OTIC USERS 4»

22a. NAME OF RESPONSIBLE INDIV'OUAL
Julian M Tishkofg

Ynclasgified
S e e TR RRR

ﬁ

——
DO Form 1473, JUN 86

Previous echitions are obu\:mo.

— SECURITY CLASSIFICATION OF Thi§ By
Unclassified

e




Block 19, Abstract, continued.
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Abstract

The purpose of this research has been to conduct fundamental investigations of tur-
bulent mixing, chemical reaction and combustion processes in turbulent. subsonic and su-
personic flows. Progress in this effort thus far has uncovered important deficiencies in
conventional modeling of these phenomena, and offered alternative suggestions and formu-
lations to address some of these deficiencies. This program is comprised of an experimental
effort. an analytical modeling effort. a computational effort, and a diagnostics development
and data-acquisition effort, the latter as dictated by specific needs of our experiments.

Our approach has been to carry out a series of detailed theoretical and experimental
studies primarily in two, well-defined, fundamentally important flow fields: free shear layers
and axisymmetric jets. To elucidate molecular transport effects, experiments and theory
concern themselves with both liquids and gases. Modeling efforts have been focused on
both shear layers and turbulent jets, with an effort to include the physics of the molec-
ular transport processes, as well as formulations of models that permit the full chemical
kinetics of the combustion process to be incorporated. The computational studies are. at
present, focused at fundamental issues pertaining to the computational simulation of both
compressible and incompressible flows.

This report includes an outline discussion of work completed under the sponsorship of
this Grant, with six papers, which have not previously been included in past reports, or
transmitted in reprint form, appended.
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1. Introduction

This effort has been directed towards issues involving mixing and chemical reactions in
turbulent shear flows at moderate to high Reynolds numbers. More specifically, the effort
has been directed towards addressing generic issues in these flows and their dependence on
the various parameters of the flow/chemical system, such as

1. entrainment and mixing of the entrained fluids, and their dependence on

a. Reynolds number,
b. Schmidt number,

c. differential diffusion effects,

(=%

. free stream density ratio,

e. dilatation owing to combustion heat release,
and. during the last year. or so, extending the studies to

f. compressibility, as measured by the convective Mach number in shear layers;

and

2. chemistry of the combusting reactants comprising the entrained fluids. including
effects of stoichiometry and chemical kinetics.

Experimental. analytical and theoretical/modeling efforts undertaken as part of this
program have focused on the mixing in turbulent shear layers and jets to provide the arena
in which to address such issues. The computational effort has concentrated on fundamental
issues in both compressible and incompressible flows and has not addressed mixing and
chemical reactions, per se, to date.

Progress in the effort reported here has been realized in all of these areas, with signif-
icant work completed in:
. . +
a. non-reacting, gas phase, turbulent jets+;

b. chemically reacting, gas phase, subsonic shear layers with unequal free stream
densities:

¢. hvdrodynamic linear stability analysis of homogeneous compressible free (un-
bounded) shear layers;

and in
d. the design of the supersonic shear layer combustion facility.

Other work in progress™ includes:

! The investigations of turbulent mixing and combustion in turbulent jets are co-sponsored. in part. by
the Gas Research I[nstitute.

* Continuing under AFOSR (URI) Contract No. F49620-86-C-0113 and AFOSR Grant No. 88-0155.
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e. fabrication of the new supersonic shear layer facility;
f. investigations of gas phase, chemically reacting jets:
liquid phase jet mixing and interface topology studies;

h. analysis of the effects of compressibility using linear hydrodynamic stability meth-
ods;

i. the development of jet mixing models that permit the inclusion of full chemical
kinetics calculations;

}. the development of lagrangian computational methods for compressible, unsteady
flows;

and

k. the development of efficient algorithms for vortex dynamics calculations.

We should note that this effort is part of a larger effort at the Graduate Aeronautical
Laboratories of the California Institute of Technology to investigate turbulent entrainment.
and mixing — with or without chemical reactions and combustion — with contributions
from students faculty and staff, not cited in this report, in a broad variety of contexts.
While the Air Force Office of Scientific Research support represents the larghest single
contribution to the sponsorship of this effort, parts of the larger effort are co-sponsored
by the Gas Research Institute, the Office of Naval Research, the Department of Energy,
and the National Bureau of Standards, with additional contributions by both Industry
{Rockwell, Rocketdyne) and the California Institute of Technology.

2. Mixing and combustion in turbulent shear layers

The experimental effort directed towards subsonic shear laver mixing and combustion
was being brought to a close during the last year of this Grant, in preparation for the
conversion of the H,/F> shear layer combustion facility to supersonic flow operation.

2.1 Heat release effects

A first documentation of the previously completed research on subsonic shear layer
heat release effects was published in the ATAA J. (Hermanson, Mungal & Dimotakis 1987).
A copy of the paper is included as Appendix A. An archival documentation of that effort
has just appeared in the J. Fluid Mechanics (Hermanson & Dimotakis 1989).
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2.2 TFree stream density ratio effects

A preliminary discussion of these effects was included in the previous annual report
(Dimotakis. Broadwell & Leonard 1987). A first documentation was presented at the 1%
National Fluid Dynamics Congress (Frieler & Dimotakis 1988). A copy of that paper is
included as Appendix B.

2.3 A cascade model for shear layer mixing and chemical reactions

A brief discussion of this model was included in the previous annual report ( Dimotakis.
Broadwell & Leonard 1987) and was presented at the U.S.—-France Workshop on Turbulent
Reactive Flows. This model seems able to capture a variety of the features of the data
in low heat release, fast kinetics chemically reacting shear laver data. It has since been
published (Dimotakis 1987). A copy is included as Appendix C.

2.4 Finite kinetics effects on shear layer combustion

The issue of finite kinetics (Damkdhler number) effects in chemical product formation
was addressed as part of this effort experimentally and theoretically in the context of the
model proposed by Broadwell & Breidenthal (1982). The conclusion of this experimental
(Mungal & Frieler 1988) and modeling effort (Broadwell & Mungal 1986. 1988) was that
a Damkohler number of approximately 40 is required, based on the ratio of the turbulent
flow convection time,

Te = Fc ,
for the large scale shear layer structures to reach a station xz, with U. the large scale
structure convection velocity, to the chemical reaction time 7, required for the chemical
reaction. The latter was estimated using a constant mass, finite kinetics calculation of a
homogeneous reactor and the Ho/NO/F; chemical system, with the aid of the CHEMKIN
chemical kinetics package made available to us by the SANDIA laboratories at Livermore
(Kee et al. 1980).

A more simplified mixing model, which can be considered nearly correct in the limit
of slow chemistry. was attempted by Dimotakis & Hall, which permitted, however. the
computation of the full chemical kinetic system (using CHEMKIN) by modeling the shear
laver as a homogeneous reactor into which the reactants are introduced at the correct
total rate and ratio, as dictated by our understanding of these quantities for the shear
layer (e.g. Dimotakis 1986). This analysis was also extended into the compressible flow
regime. using the available information at the time. as part of the design effort for the
new supersonic shear layer combustion facility. We subsequently decided that the results
of this analysis might be of interest in a broader context and they were presented at the
2374 Joint Propulsion Meeting (Dimotakis & Hall 1987). They are included in this report
as Appendix D.
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2.5 Hydrodynamic stability of compressible shear layers

A first calculation of the hydrodynamic stability characteristics of compressible, free
and unbounded shcar lavers was presented at the 1°* National Fluid Dynamics Congress
(Zhuang, Kubota & Dimotakis 1988). A copy is included as Appendix E. This effort is con-
tinuing with calculations of the effect of different free stream densities, static temperatures,
molecular weights, ratios of specific heats. et c., presently in progress.

2.6 Supersonic shear layer combustion facility

The design of the supersonic shear layer combustion facility was completed (Hall et
al. 1988; an updated version of this document is in preparation). A significant advance
has been realized, in our opinion. in the design of the throttling valve and associated
control system, which will regulate the pressure in the supersonic stream plenum during
the expected 3 sec run time by means of an active feedback loop with sufficient bandwidth
and resolution to meet the flow quality specifications.

Fabrication and assembly begun last summer, with many of the major components in
place at this writing. The initial configuration is with a (low) supersonic (M; = 1.5) high
speed free stream and a subsonic (M> = 0.2) low speed stream. High speed stream nozzles
for AM; = 2.5 and M, = 3.2 have also been fabricated. Please note, however, that the low
speed stream gas supply section is capable of providing supersonic flow for the low speed
stream also. should that prove an issue in the future. We expect a first, non-reacting run,
with this initial configuration, sometime this summer.

3. Mixing and combustion in turbulent jets

The part of the research effort dealing with mixing, chemical reactions and combustion
in turbulent jets is co-sponsored by the Gas Research Institute**.

3.1 Gas phase mixing in turbulent non-reacting jets

The work on moderate Reynolds number {5,000 < Re < 40,000) non-reacting tur-
bulent jet mixing, using high time and space resolution laser Rayleigh scattering diag-
nostic techniques was completed. A first presentation of the low Reynolds number data
(Re = 5,000) from this work was made at the 1*' National Fluid Dyvnamics Congress
(Dowling & Dimotakis 1988) and has since been submitted to the AIAA J. for publication.
A copy of that paper is included as Appendix F. A thesis documenting a large part of this
work was also completed (Dowling 1988) last spring. An archival documentation of part of
the effort. dealing with the similarity properties of the far field of the jet fluid concentration
field in gas-phase turbulent jets, including the results of experiments that were completed
subsequent to the thesis. has been submitted for publication (Dowling & Dimotakis 1989).

** GRI Centract No. 5087-260-2467 (1-Jan-87 to 31-Dec-89).
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3.2 High Pressure jet Combustion Facility

The fabrication of this facility {Dimotakis. Broadwell & Leonard 1988. Sec. 3.2) is
nearing completion at this writing. Recall that it is designed to address a series of is-
sues regarding the dependence of turbulent jet (molecular) mixing on such flow/chemistry
parameters as reactant stoichiometry. Reynolds number. heat release (with or without buoy-
ancy effects). and Damkohler number. Its main capability is in that it permits the study of
turbulent jet mixing with chemical reactions and combustion to be studied over a range of
pressures of 0.1 atm < py < 10atm, permitting a range of two decades of Reynelds number
to be covered. Depending on other constraints imposed on the flow/chemical svstem. as

much as additional decade might be achievable. This effort is part of the Ph.D. research of
Mr. Richard Gilbrech.

Some delays in the final assembly and testing were incurred in order to improve the
jet fluid delivery system so as to shorten the flow start-up time. The first hot runs are
expected sometime during June 1989,

3.3 Turbulent structure and mixing in high Schmidt number jets

We are continuing investigations of the fine scale turbulent structure in a liquid phase
(high Schmidt number). axisymmetric jet. Laser-induced fluorescence (LIF) concentration
measurements have been performed at Revnolds numbers of 10.000 and 20.000. both on the
centerline and at several radial locations. While keeping the moderaie Reynolds numbers
in mind. we have made several findings to date:

1. No —1 slope is observed in the power spectrum at scales below the Kolmogorov
scale, as would have been expected (Batchelor 1959)T. This reflects on the struc-
ture of the straining field at these scales, which aer important for molecular dif-
fusion and mixing, and has interesting ramifications for jet modeling for both gas
phase and liquid phase jet mixing modeling.

2. The behavior of the inertial range of the spectrum suggests that the turbulence has
in some sense not reached its asymptotic behavior at these Reynolds numbers (as
evidenced by an incipient. but possibly underdeveloped. —5/3 slope). This may be
significant in as much as this range of Reynolds numbers is typically considered as
corresponding to fully developed flow. as least in terms of measured flame lengths
(e.g. Dahm & Dimotakis 1987).

3. As reported previously in gas phase jets (Dowling 1988), the inertial range spec-
trum power law exponent depends on the radial measurement location »/(r — 2¢)
in the jet. Unless the variation can be attributed to differences between temporal
and spatial data. this would suggest that qualitative differences may exist in the
turbulent field as a function of radial position.

twe appreciate that measurements of very high spatial and temporal resolution. as well as very high
signal-to-noise ratio, are required to make this claim. We have made advances in our LIF technique,
however. and abandoned imaging diagnostics, for the time being. in the interest of observing these
specifications.
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4. Calculations have been performed on both two-dimensional image data. and very
long records of high spatial and temporal resolution single-point scalar data. to
investigate the validity of a fractal dimension description of the iso-scalar surfaces
in the jet, as has been suggested (e.g. Sreenivasan & Meneveau 1986, Gouldin
1988). Our data suggest that no such fractal dimension erists. On the other
hand, our data suggest that the geometry can be described in terms a similarity
relation. which is not a power law, however.

[t has been determined that measurements at still higher Reynolds number should
have sufficient resolution to address many of these questions. A new jet plenum and flow
control system are being constructed which will permit operation up to Re = 100, 000.
Such measurements will allow us to address issues concerning Revnolds number effects.

This effort is part of the Ph.D. research of Mr. Paul Miller.

4. Computational effort

The computational effort undertaken under the sponsorship of this Grant has focused
on two main problems.

The first, conducted as part of the Ph.D. research of Mr. Francois Pepin. deals with
the improvement of the efficiency of vortex element methods for the use in incompressible
(M — 0) flow. As reported previously (see Dimotakis et al. 1987, Sec. 4), an improvement
from the typical N2, with N the number of computational vortex elements, to N log N has
been achieved. As vet. no documentation of this work? is available.

The second, conducted as part of the Ph.D. research of Mr. Tasso Lappas, has focused
on the development of Lagrangian methods, suitable for the simulation of both compressible
and incompressible flows. To date, one-dimensional unsteady gasdynamic flows have been
simulated successfuly. with considerable improvements, relative to established methods, in
the manner in which shocks., and their associated entropy production, are captured by
the new scheme. Specifically, the improvement in the Lagrangian description obviates the
usual flux-corrected-transport fixes to remove the oscillations in the computed flow field.
A documentation of this effort should be available sometime this Fall. This work will be
extended? to unsteady. two-dimensional flow.

H Continuing under co-sponsorship of AFOSR Grant 88-0155.
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Heat Release Effects
on Shear-Layer Growth and Entrainment

}. C. Hermanson,* M. G. Mungal,t and P. E. Dimotakis}
California Institute of Technology, Pasadena, California

The effects of heat release were studied in a planar, gaseous reacting mixing layer formed between two sub-
sonic [reestreams; one containing hydrogen in an inert diluent, the other containing fluorine in an inert diluent.
Sufficiently high concentrations of hydrogen and fluorine reactants were employed to produce adiabatic flame
temperature rises of up to 940 K (adiabatic flame temperature of 1240 K absolute). Although the displacement
thickness of the Iayer for a zero streamwise pressure gradient showed an increase with increasing heat release, the
actual thickness of the mixing layer at a given downstream location was not observed to increase and. in fact,
was characterized by a slight thinning. The overall entrainment into the layer was seen (o be substantially reduced
by heat release. The large-scale vortical nature of the flow appeared to persist over all levels of heat release in
this investigation. Imposition of a favorable pressure gradient, though resulting in additional thinning of the
layer, was observed to have no resolvable effect on the amount of chemical product formation and hence on the

mixing.

I. Introduction

HIS investigation was concerned with heat-release ef-

fects in a subsonic, gas-phase, turbulent, plane, reacting
shear layer at high Reynolds number. The work was an ex-
tension of earlier work in the same facility.'> The flow con-
sisted of a two-dimensional mixing layer with gas-phase
freestreams; one stream carrying a given concentration of
hydrogen in an inert diluent, the other carrying fluorine in
an inert diluent. The reaction H, + F, —2HF is highly ex-
othermic so that reactant conceutrations of 1% H, and 1%
F,, each in an N, diluent, produce an adiabatic flame
temperature rise of 93 K above ambient. Results will be
presented here corresponding to fluorine concentrations of
up to 6% and hydrogen concentrations of up to 24%, with a
maximum adiabatic flame temperature rise of 940 K (cor-
responding to an adiabatic flame temperature of 1240 K
absolute).

In earlier, low heat release work by Mungal et al.'-? with
flame temperature rises of up to 165 K, no coupling of heat
release with the fluid mechanics could be observed, as
manifested by the layer growth rate, entrainment, and discern-
ible large-scale structure dynamics. In those works, the
chemical reaction could be considered as a diagnostic used to
infer the amount of molecular mixing without disturbing the
overall properties of the layer. In the work reported here, the
heat release was much larger and the effects of the heat
release itseif on the properties of the shear layer were in-
vestigated. The highest heat-release cases reported here pro-
duced a time-averaged temperature change sufficient to
reduce the mean density in the center of the layer by a factor
of nearly 3, assuming constant pressure conditions.
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II. Experimental Facility and Instrumentation

The experimental apparatus is described in detail by
Mungal and Dimotakis? and also by Hermanson.* It is a
blowdown facility in which premixed volumes of fluorine in
an inert diluent and hydrogen in an inert diluent are
discharged through sonic orifices to maintain a constant
mass flux. Each stream enters a settling and contraction sec-
tion for turbulence suppression with the high-speed stream
emerging from a 6:1 contraction with an exit area of §x20
cm, and the low-speed stream emerging from a'4:1 contrac-
tion with a 7.5 x 20-cm exit area. The two streams mee! at
the tip of a splitter plate, with a trailing edge included angle
of 3.78 deg. The high-speed freestream turbulence level was
measured? to be about 0.6% rms.

To offset the freestream density difference, which results
from large amounts of hydrogen in one stream, the densities
of the freestreams were matched, for most cases, by using as
diluent a mixture of nitrogen and a small amount of helium
on the fluorine side, and a mixture of nitrogen with a small
amount of argon on the hydrogen side. This also served to
match the heat capacities of the two freestreams to an ac-
curacy of approximately 6-10%, as the freestream absolute
reactant concentrations were estimated to be accurate to
3-5% by Mungal and Dimotakis.’

Runs were performed with a nominal high-speed flow
velocity of 22 m/s and a freestream speed ratio of
U,/U,; =0.4. In practice, the high-speed flow velocity varied
from run to run up to about 5% from the nominal high-
speed velocity; the corresponding variation in the low-speed
stream velocity was typically less than 6%. The freestream
speed ratio for each run was typically within 4% of the
nominal value. These variations were a result of differences
in gas constants of the various mixtures, although the sonic
metering orifices were adjusted for each run to minimize
these variations. The measuring station was positioned at
x=45.7 cm downstream of the splitter-plate trailing edge.
The Reynolds number at the measuring statiorn was typically
Re, =6x 10, based on the freestream velocity difference,
the 1% thickness of the mean temperature profile, and the
cold freestream kinematic viscosity. The 1% thickness, §,, of
the temperature or concentration field?* is defined here as
the transverse width of the layer at which the time-averaged
temperature rise is 1% of the maximum time-averaged
temperature rise and was used in this investigatior as the
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principal measure of laver width. The quality 4, has been
shown® to correlate well with the visual thickness 4,,. (Ret. 6)
ot the layer. The value of the Reynolds number based on 4,
is well above that for the mixing transition as reported by
Bernal et al.,” Breidenthal,® and Konrad.” The correspond-
ing Revnolds number based on the high-speed freestream
velocity and on the downstream distance was Re, =6 x 10°.
A diagram of the shear-layer geometry is shown in Fig. 1.

Temperature data were recorded with a rake of eight
2.5-um-diam platinum-10% rhodium cold wires, with a
typical wire span of 1.5 mm, welded to Inconel prongs. For
some runs, a rake of 25-um-diam Chromel-Afumel ther-
mocouples was employed. It was found that the 2.5 um
resistance wires in the hottest regions did not survive in runs
in which the adiabatic flame temperature rise exceeded ap-
proximately 600 K. Both the cold wire and thermocouple
probe rakes were positioned across the transverse extent of
the layer. The probes were equally spaced at nominal inter-
vals of | c¢m, which sufficed to capture the mean
temperature rise profile. The total data rate for the resistance
wires was 80 kHz, corresponding to 10 kHz per probe. The
thermocouples were sampled at 500 Hz each, for a total data
rate of 4 kHz; their considerably lower frequency response
not warranting a higher rate.

Thermocouples produce a voltage proportional to the
junction temperature and normally do not require calibra-
uon. The resistance wires were calibrated as described
previously'* using a hot and cold jet of known temperature.
The two measurements provided calibration constants to
convert voltage to temperature rise. An additional correction
was applied to the output signal voltage in the present ex-
periments to account for the nonlinearity in the resistivity of
the platinum-10% rhodium wire element at elevated
temperatures.'’ It was determined that for neither the ther-
mocouples nor the resistance wires was there significant
radiation error for the temperatures in this investigation.''
Both probes, however, were influenced by heat conduction
to the support prongs, which could have resulted in excur-
sions from the mean temperature being in error by as much
as 10-20% for the cold wires and up to 40% for the ther-
mocouples. Both diagnostics, however, produced accurate
mean temperatures, as during a small fraction of the course
of the run (before data acquisition began) the tips of the sup-
port prongs equilibrated to the local mean value. Good
agreement (typically within 5%) was obtained in runs in
which both sets of probes were employed. Errors resulting
from differences in the thermal conductivities between the
freestreams were established to be small.?

In addition to the temperature probes, a schlieren system
was utilized for concurrent flow visualization. The beam
width utilized was sufficient to illuminate a 25-cm length of
the shear layer. A circular source mask and a circular hole
spatial filter were used in place of the conventional source
slit and knife edge in an effort to give equal weights to gra-
dients in index of refraction in all directions and to better
resolve the large-scale structure of the flow. The hole sizes
were increased with increasing flow temperature to optimize
(reduce) sensitivity as needed. High time-resolution spark
schlieren photographs were taken with a spark source ( ~ 3-us
duration), synchronized with a motor-driven 35-mm camera,
at a rate of approximately three frames per second.

The mean velocity profile was measured for most runs by
a pitot probe rake of 15 probes connected to a miniature
manometer bank filled with fluorine-resistant oil (Hooker
Chemical Fluorolube FS-5) with a time response of 2-3 s,
adequate to yield a reliable mean dynamic pressure profile
during each 6-s run. The bank was photographed by a sec-
ond motor-driven 35-mm camera. The photographic data
were digitized and reduced to mean velocity profiles. This
technique of measuring the pitot pressure was estimated to
be accurate 1o 5%. Rebollo' estimated that the accuracy of
extracting mean velocities from pitot pressures in noncon-

HEAT RELEASE EFFECTS ON SHEAR-LAYER GROWTH 79

stant density flows is about 3-5%. This estimate was made
for a shear flow with a freestream density ratio of p,. o, = 7.
In the present experiment, the density ratio of the cold
freestreams to the hot layer center was at most 3, suggesting
that the Rebollo error estimate represents an upper bound
under these conditions.

Finally, the streamwise static pressure gradient was
monitored by measuring the pressure difference between two
downstream locations on the low-speed sidewall with a
Datametrics type 573 fluorine-resistant Barocel sensor. The
high-speed sidewall was kept horizontal for all runs and the
low-speed sidewall was adjusted for the desired streamwise
pressure gradient. The wedge-like geometry of the planar
shear-layer displacement allows this simple means of accom-
modating or imposing any desired pressure gradient. Most of
the runs in the present investigation were performed with the
low-speed sidewall adjusted to the requisite divergence angle
1o ensure a zero streamwise pressure gradient. For some runs
at high heat release, the walls were left fixed at the angie re-
quired for zero pressure gradient at zero heat release, pro-
ducing a favorable streamwise pressure gradient (accelerating
flow) as a result of the combustion displacement effects due
to volume expansion.

III. Chemistry
The chemical reaction utilized 1n the present investigation
is effectively

H,+F,—=2HF, AQ= —130 kcal-mole

This yields a temperature rise of 93 K for 1% F, and 1% H,
in N, diluent under constant pressure, adiabatic conditions
(this is the so-called adiabatic flame temperature rise). The
chemical reaction is actually comprised of two second-order
chain reactions:

H.+F—-HF+H, AQ= -32kcal/mole
H+F,—-HF+F, AQ= -98 kcal’mole

Proper chain initiation requires some free F atoms, which
were generated in these experiments by premixing a trace
amount of nitric oxide into the hydrogen-carrying siream.
This allows the reaction

F.+NO—-NOF+F

which provides the required smail F atom concentration in
the layer to sustain proper ignition and combustion. For all
runs in this investigation, the NO concentration was main-
tained at 3% of the freestream fluorine concentration.

For all flows reported here, the resulting chemical time
scales were fast compared with the fluid mechanical time
scales. The chemical time scales for the reaction, over the en-
tire range of concentrations, were determined using the
CHEMKIN chemical kinetics program.!' The chemical rate

velocity
uim

Temperature
Rise BT(m

Fig. 1 Turbulent shear-layer geometry.
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data for the reactions involved were taken from Refs. 14 and
15. The Damkohler number (ratio of mixing time to
chemical time) based on the local, large-scale characteristic
time (6, AL, where AU is the freestream velocity difference)
ranged trom 25 to 130 with increasing reactant concentra-
tions. The Damkohier number based on the time of flight
from the location of the mixing transition to the measuring
station {(x—x,) U, where U_. is the mean convection
speed, (L, + U,) 2] varied from 95 to 470. Taking the tran-
sition Reynolds number to be Ré’al =2 x 10* gives x, =14.2
cm. The recent work of Mungal and Frieler'® suggests that
the chemistry can be regarded as being fast when the Dam-
Kohler numbers exceed 10 and 40 for the large scales and
time of flight, respectively. Chemical kinetics are, conse-
quently, not an issue in the present investigation, where the
chemistry is much faster as a result of the higher reactant
concentrations and combustion temperatures.

The stoichiometric mixture ratio ¢ is defined here as the
volume of high-speed fluid required to react completely with
a unit volum~ of low-speed fluid. This is the same as the
ratio of the low-speed freestream molar concentration ¢y, to
the high-speed freestream molar concentration ¢, divided by
the low- to high-speed stoichiometric ratio, i.e.

Coz/Cot

= =Cn/Cy

(€027 Coy )
In this case the molar stoichiometric ratio for the hydrogen-
fluorine reaction is unity.

IV. Results and Discussion

A. Growth Rate and Entrainment

The low-speed sidewall divergence required for zero
streamwise pressure gradient is a direct measure of the
displacement thickness of the layer 6°, where 6*/(x—x,) in-
dicates the tangent of the angle 3 by which the low-speed
freestream line is shifted owing to the presence of the shear
layer (see Fig. 1). Note that the displacement thickness is less
than zero for a layer with no heat release, and increases
steadily with heat release, as shown in Fig. 2. The parameter
(po — #)/p,y Tepresents the mean normalized density reduction
in the layer due to heat release, where 5 is the mean density
in the layer and p, =(p, +0,)/2 is the average (cold) density
of the freestreams. The mean density is defined as

i ul Ty
PR T, +aD dr
where y, , are the 1% points of the mean temperature profile
on the high- and low-speed sides, respectively; T, the am-
bient temperature; and A7 the time-averaged temperature
rise at each point across the layer. This calculation neglects
the small changes in pressure across the layer by taking the
pressure to be constant. Alternatively, the effects of heat
release could be quantified by use of the parameter
r=(AT)/T,. which represents, at constant pressure, the ad-
ditional volume created by heat addition. (A7) denotes the
mean temperature rise in the layer, which is defined here in a
similar fashion to the mean density.

The observed 1% temperature profile thickness at zero
pressure gradient is plotted vs the mean density in the layer
in Fig. 3. It may be worth noting that the actual shear-layer
thickness, in spite of large heat release and large density
changes, does nor increase with heat release and, in fact,
shows a slight decrease, even though the displacement
thickness (Fig. 2) increases with heat release. This effect was
noted by Wallace'” and was observed in the present set of
experiments in which the maximum mean flow temperature
increase was about three times greater than in Ref. 17. Since
it was difficult to hold the speed ratio at exactly 0.40 from
run to run and also because the density ratio of the
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freestreams was slightly different from unity for some runs,
each data point in Fig. 3 has been corrected by normalza-
tion with the expected growth rate for a cold laver with the
identical speed and density ratio, using the formula derived
in Ref. 18.

& ( l-r )( : t-s- )
— el ——J{1+s5 -
x 1+5s:r F+29[(1+r)y/(1=r)]

where s=p./p,, r=U,/U,, and ¢ is a constant. A linear
least-squares fit to the data in Fig. 3 suggests that the layer
thinning, for a mean density reduction of 40% may be as
high as 15%. The largest mean density reduction presented
in this work, (o, — 5}/ 0, =0.38, corresponds to a run with an
adiabatic flame temperature rise of A7, =940 K and a mean
temperature rise in the layer of (A7)=248 K. No
dependence of the thinning trend on stoichiometric mixture
ratio was observed.

The slight reduction in layer thickness with increasing heat
release is also confirmed by the mean velocity data. Sample
velocity profiles, at different heat release but identical speed
and density ratios, are presented in Fig. 4. It can be seen that
the hotter layer is noticeably steeper in maximum slope, in
agreement with Ref. 17. Normalization of this maximum
slope by the freestream velocity difference gives the vorticity
thickness é6_ of the layer,

1 (dU)
5. AUNdy/ ..,

A plot of the vorticity thickness variation with heat release,
again corrected for variations in speed ratio and density
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Fig. 5§ Normalized vorticity thickness comparison with Ref. 17.

ratio, is shown in Fig. 5. Each point is normalized by a
representative value for the vorticity thickness at zero heat
release. The portion of the present results at moderate heat
release, including some unpublished data of Mungal, are
seen to be in good agreement with Ref. 17. Since the data of
Ref. 17 were originally given in terms of AT,,,,/ Ty, the max-
imum time-averaged temperature rise over the ambient
temperature, it was necessary to use the quantity
AT a/ (AT ax + Tg) for the abscissa parameter of Fig. S.
This quantity is slightly different than (p, — 3)/p, because the
density is not a linear function of the temperature rise, but
nonetheless yields a comparable thinning effect to Fig. 3.
Direct numerical simulations of a reacting mixing layer
performed by McMurtry et al.'® also suggest a decrease in
layer thickness when exothermic reactions occur, in
qualitative agreement with the present results. Those simula-
tions indicate both a decrease in the width of the calculated
product concentration profile as well as a steepening in the
mean velocity profile with increasing heat release.
Experiments performed at higher temperatures than those
in this work by Pitz and Daily?® in a combusting mixing
layer formed downstream of a rearward-facing step indicated
that the vorticity thickness did not appear to change between
their cold runs and high heat-release runs. However, Keller
and Daily?' report that, in a reacting mixing layer between a
cold premixed reactant stream and a preheated combustion
product stream, the vorticity thickness increases significantly
with increasing temperature. The reasons for the discrepancy
between those results and the ones reported here are not
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clear at this writing. However, two important differences ex-
ist between the experimental conditions of those investiga-
tions and the present work. First, Pitz and Daily*® and Keller
and Daily?! studied shear layers formed between unequal
density fluids, unlike the present study with matched
freestream densities. Second, those experiments, in contrast
to the present investigation, were performed in a constant
area duct in which a pressure gradient was allowed to
develop.

A complicating factor in any discussion of growth rate is
the location of the virtual origin x,, since the relevant
similarity downstream coordinate is in fact y/(x—x,). The
trends in layer thinning reported here do allow the possibility
that some of the effects could be accounted for by a shift in
the virtual origin with heat release. The location of the vir-
tual origin x, was determined visually from the intersection
of the apparent layer edges as revealed by spark schlieren
photographs (see Sec. IV. B). These results did not, however,
suggest any systematic change in the location of the virtual
origin with heat release, and a representative value of
Xo=—3.2 cm was used for all normalizations in this in-
vestigation.* Initial conditions can have a significant effect
on layer growth as has been shown, for example, by Bro-
wand and Latigo;* see also Batt,”? Bradshaw,™ and the
discussion in the review paper by Ho and Huerre.?*

One implication of the fact that the layer width does not
increase with increasing temperature is that, since the density
in the layer is substantially reduced but the layer does not
grow faster, the total volumetric entrainment of freestream
fluid into the layer must also be reduced greatly by heat
release. The amount of entrainment into the layer can be
calculated from the mean velocity and density (i.c.,
temperature) profiles as follows:

dn

14 S"I pU
U,(x—xo) B n2 DoU|

where V¥ is the volume flux into the layer per unit span,
x—x, the downstream coordinate, and n=y/(x—Xx,) the
shear-layer similarity coordinate. This expression assumes
that the layer is self-similar at the station at which the in-
tegral is performed. The quantity poU was computed as 5U,
which was used here as an approximation for the density-
velocity correl- ‘ion pU.

Results from Mungal et al.’ suggest that there is a
Reynolds number dependence on product formation. Since
the growth rate does appear to be a function of the product
formation (i.e., heat release), strictly speaking, the flow
would not be expected to be exactly self-similar. An alternate
method,'#26 which approximates the overall entrainment, is
to use the geometry of the layer as shown in Fig. 1 to derive

v
Tl 17

where r=U,/U|, n,, are the similarity coordinate edges of
the shear layer, and § is the deflection angle of the low-speed
sidewall. A common difficulty of both methods is that of
selecting values for 5, and »n,. One reasonable choice is the
pair of points corresponding to the 1% edges of the
temperature profile. Resulting calculations for choices of 1
and 10% points in the temperature profiles, for both the in-
tegral and geometric methods, are plotted in Fig. 6. It can be
seen that, regardless of the choice of edge reference points,
the inference is that the entrainment into the layer is strongly
reduced as a function of heat release, amounting to about
50% for a mean density in the layer of 40% below its
nominal cold value. The decrease in entrainment with heat
release is greater than that suggested by considering only the
increase in volume and taking the entrainment to be propor-
tional to 1/(r+ 1). That the entrainment reduction is in ex-
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significant change in either the maximum time-averaged
temperature or in the total amount of product formed,
which is related to the area under the mean temperature pro-
file normalized by the layer thickness.>* Temperature pro-
files at lower temperatures also show no systematic changes
in the total amount of product resulting from pressure gra-
dient, at least to within the estimated reproducibility and ac-
curacy of the data (3-5%).

VI. Conclusions

The results of this investigation suggest that the growth
rate of a chemically reacting shear layer with heat release
does not increase and, in fact, decreases slightly with increas-
ing heat release. In the presence of an increase in the shear-
layer displacement thickness as a result of heat release, one
might expect a commensurate increase in shear layer
thickness. The implication is that the decrease in the entrain-
ment flux due to volume expansion must more than compen-
sate for the displacement effect.

The imposition of a favorable pressure gradient is found
to not have any noticeable effect on the amount of mixing
and chemical production in the layer.
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Abstract

The effects of freestream density ratio on the
mixing and ccmoustion in a high Reynolds number,

subsonic, gas-phase, non-buoyant, two~-dimensional
turbulent mixing layer, have been investigated.
Measurements of temperature rise (heat release)

examine the
ratio on several
state within the

have been made which enable us to
effect c¢f freestream density
aspects of the mixed fluad
TLarpulient ccmbustion region. In experiments with
very high and very low stoichiometric mixture
ratios ("flip" experiments), the heat release from
an exothezrmic reaction serves as a guantitative
label for the lean reactant freestream fluid that
becomes molecularly mixed. Properly normalized,
the sum of the mean temperature rise profiles of
tne two flip experiments represent the probability
of fluid molecularly mixed at any composition. The
mole fraction disctribution and number density
profile of the mixed fluid can also be inferred
from such measurements. Although the density ratio
in these experiments was varied by a factor of
thirty, profiles of these quantities show little
variation, with integrals varying by less than 10%.
This 1insensitivity differs from that of the
composition o0f molecularly mixed fluid, which is
very sensitive to the density ratio. While the
profiles of composition exhibit some similarity of
shape, the average composition of mixed fluid in
the layer varies from nearly 1:2 to over 2:1 as the
density ratio is increased. A comparison of data
and available theory for this offset or average
composition 18 discussed.

Introduction

The two-dimensional turbulent shear layer has
been the subject of investigation for many years,
particularly the gas phase layer with uniform
freestream gensities. This flow represents one of
the saimplest in which turbulent mixing occurs
between two separate streams. Relatively simple
boundary conditions and strong similarity
properties combine to make this one of the more
atilracrive flows to experimentalists, theorists and
modelers.

Although it has been the subject of stucy in
the past, there are several reasons why the present
work focuses on the effects of freestream density
ratio on the shear layer. As noted by Brown &
Roshko (1974), this knowledge is a necessary
precursor to the study of compressibility effects.
The renewed interest in supersonic mixing and
combustion, combined with the experimental
difficulties of producing density matched
supersonic shear flows has given a new impetus to
the search for an understanding of the effects of
the density ratio in these flows. However, this is
not to imply that the only interest rests in the
connection to compressible flows. In many
important engineering applications the shear layer
geometry is used to mix reactants or to ignite
premixed streams which release large amounts of
heat. Optimization of combustion systems used in
propulsion and energy "production™ roles requires
knowledge of the physical mechanisms involved.
Again, a study of turbulent combustion with large
heat release and therefore large densaty
differences, is aided by an understanding of
density ratio effects.

Several investigations in the past have dealt
directly with this issue. Brown & Roshko (1971,
1974) performed a series of experiments in subsonic
non-homogenecus layers and concluded, contrary to
proposals entertained at the time, that the large
reductions in spreading rate found in compressible
layers could not be attributed to density ratio
effects. Based on directly measured concentration
fields in shear layers at two freestream density
ratios, Konrad (1976) concluded that the
composition of the mixed fluid was strongly
affected by the density ratio of the freestreams
but that for each case it did not vary within the
mixing region as expected based on conventional
gradient transport modeling. Wallace (1981)
investigated the product formed due to mixing and
reaction for both density ratios studied by Konrad.
By measuring the temperature rise for several
values of the freestream reactant concentration, he
found the mean composition of the mixed fluid to be
in good agreement with Konrad for the uniform
density case, but was unable to use the technique
for the non-uniform density case.

' Graduate Student, Aeronautics

) Professor of Applied Physics and Aeronautics

Copyright € 1988 by C. E. Frieler

American Institute of Aeronautics and Astronautics,

and P. E. Dimotakis.
Inc.

Published by the
with permission.




A.zhough P34 d:d  nacc  deas specirfically with
neon-ncmogeneous f£lows, there :3 another study which
helped .ay twhe ground worx f2or the present
nvestigaticn. Keocnestanany & CTimotakis  (198%)
measured the amount of reaction product in a liguaid
snear layer at £flow conditions comparable to the
vnifcrm Zensity <Tase of Konrad. Trhey concluded
=nat trne amount of mixed fluid was much less than
pnhase shear lavers and argued
indicated the importance of
3 a paramezer. This depenaence
al assumpticrns in classical
Reynocids numdber £1low, wnere the
ccefficients are several craers
smaL.er =wnhnan tnhe effective turbulent

s work, they also
cemonstrateq how several could be
derermined from react:ing flow measurements as iLf
directly measured with the requisite resolution.
This 15 c<ne cf the mectivations for the present

wWorK, Breidenzhal (1981) cted that in  all
tecnrnigues whiznh o atrtempr to direcstly measure the
czcmpesation field, any failure to resolve fully all
T features cf the fiow £field leads to an

e for the amount of mixed £luid. As
ty Koochesfahani & Dimotak:is, by using
r nature of chemical reactions and

the mean value of the product
an estimate can be derived wnich :is

In 1332 a new facility was compieted which
investigaticn of reacting, gas-phase
snear flows. This study follows in the wake of the
lcw neat release study (Mungal & Dimotakis 1984),
wne stuzy of neat release effects (Hermanson 198S,
sermanson et al. 1987), rtne study of Reynolds
e (Mungal et al. 1385) and the
f Damkohler numper effects (Mungal &
Using the same fac:ility, the
study nas extenaed the range of topics to
iude tre effects cf freestream density ratio.
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Experiments

Tne facility consists of a blowdown tunnel
deszri.czed in Zetail in Mungal & Dimotakis (1984)
ans HKermanson (1989 Gases are loaded by a
partial pressure technique into hagh pressure
reaczant zanks. Driven by a large (nearly)
<instant pressure source, these gases flow during a

r
30 sonic

Tun  thIsu metering valves and into the
acroaratus test section. In the present
excer.ments, the high-speed flow 1ssues from a 6:1
Izatracticn through a 5 x20 cme exit at a velocity
o0 U.e2im/s The low-speed flow emerges from a
T, %20 =m< exit after a 4:1 contraction at a
ve.scity Sf Ua=8.5m/s. These streams enter the

7
tes. secticr as shown in Fig. 1.

Exper.ments involving chemical reaction
Cetween mivtures ¢f hydrogen and inert gases 1ir, the
Tigh-speea stream asnd fluoraine and i1nert gases in
the icw-speed stream have been performed. Table 1
nlains tne detailed composition of each stream
ail erxper:ments for which results are presented
re. The apparatus allows the use of precise
ixtures cf gases which have sagnificant density
diflerences, keeping most other relevant quantities
constant., The choices of diluent gasea allowed
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Figure . Turtulent Shear lLayer Geomerry

experiment to ke carried out fo5r the
freestream density razios 1/8 < pospy < 8,
heat capacity of the mixtures carefully
Unfortunately, results for pps/p; >4, which couid &
directly compared to the pj/py =7 case of Konrad,
are nct included. We suspect that a new moce of
instability, details of which were discussed in
Koochesfahani & Frieler (1387), becomes impcrtant
for large values of the cdensity ratio. Allnougn
results for pPa/py~4 snow only & hint ct ztne
effects, resuits £for higher density ratios were
sufficiently different that comparison with
“normal” shear layers would be ocutside the scope c¢
present work. The data presented here cover 1ine
range of density ratios 0.136 < pa/py < 4, whach
corresponds to a factor of 30 for that parameter.

Composation ()

P2/Py ° w2 £2 N2 Az | He NO
L1386 1/8 HSS 4. .9 95. Y
LSS .5 4.5 95.
1
L} KSS .5 3.5 96. | WCl
Lss 4. ! 96 |
!
.25 1/8 KSS <. 17. 79. S
LSS -] 20.5 9.
|
8 HSS .5 2C.1 79.4 i.c1
LSS 4. 16.6 T ‘
!
.8 1/8 | nss 1. 1.4 | 48.6 |
LSS -] 50.9 4B.6 |
[ Hs$ .5 $1.3 48.2 | 3
LSS 4. 47.8 43.2 |
1 1/8 | MSS 4. 93. 3. 1
L85 .5 96.5 3.
(] HSS .S 98 . 1.5 .0l
LSS 4. 94.5 1.5
2. 1/8 | HSS ] l $2.9 43 3
Lss 5 56.4 3.3
[] HSS .S 3.9 II 45.6 L
LSS 4. 50. 4 4.6 J
"
1
4. 1/8 KSS 4. [ 22.1 3.9 DY
LSS .5 25.6 73.%
8 HSS .5 22.6 T€¢.9 .cl
LSS L 9.2 6.9

Table 1. Composition details for each experimenz.




23se3 oo an estimatisn technigque described in
Mingal & e.er (1383) and ref:ined 1n [Cumotakis &
Hall (1337, {or these exper:iments

K.netic ra:te
mer

were wstaplished to ke factor of two

n.gner <tnan the rates at which product £ormation

- Tmay © assumed %o be mixing-limited. s HF
sysrem may bre regaraced as a fast and

> reaction system, even at low

n2TaTLIInS of reactants and at extreme

1z ratios. This allowed experiments to
ith the heat release maintained below
suggested bty Wallace (1981) and
oy Hermanson (198%) and Hermanson et
caeyond wnich censity chahges result.ng
begin to affect the flu.d
e Turbulent shear lavyer. At the
where our measurements were
he Reynolds number for these
nts, rtased cn properties of the nitrogen

3 the velocsity cdifference between the two
s, was Re=AUb/v=6.7x10% Here the
lengzn & :s the reference length scale used

~he present work and 1s defined as the
zween the 1% points of the mixed fluid

e
grcocaniliity profiles, pmly) an Fig. 4. This wadeth
tas ceen fgund to correspond closely to the visual
H ess :tf{ the mixing reqion. Measurements of
TerperatuIe rise were made using a rake of eight
res:stance wire (2.5 um) thermometers, as
tescriced in Mungal & Dimotakis (1984). Run times
=ecze 6 seccnas with 1.5 second start-up and 4
seccnas of Zata acgqu.asition. Probes were sampled
at an agjrecate rate of 240 kHz for a total of - 109
cata gounts for each run.
In the l.mit of low heat release, temperature
° r.se measures th nunwoer density of product
~clecules. As a result cf the finite heat release

in trnese experiments,
cf mslezules s not

however, the number densaity
constant. Because of the

- carefyul ratchning of specific heats, we can still
re.ate tne reasurements o the amount of product
fcrmed in tne present experaments. In particular,

n

P
— = AT
n

where AT, n, and n are respectively the temperature
rise acive amtient, the number density of product
ard the total number density. Assumaing
ar.zc ccngitisns, the quantities n, and n can be
from the temperature rise and

the cerfect gas law, i.e.
- T
AT n 0
_p o . and — -
VN Ty * AT ng, Tg + AT

where T~ .3 the ambient temperature ( ~ 300 K) and
he number density of molecules in the
freestreams at To- Fortunately, as argued by
Mungal & Dimotakis (1984), the probes used in these
excer.ments produce very accurate measurements of
the mean temperatures. Therefore the mean of the
Tatio n./n can be reliably determined, although
averages cf n. and n separately will suffer to some
degree from 1nacequate probe resolution.

A sampie of the results of a single experiment
S shown in Fig. 2. Measured mean temperatures at
each of <re e.ght probe locations are indicated by
the circtles (AT,.. ). Fitted profiles are also
shown €£5r the mean temperature, mean number density

cf{ product (Np/neg ) and mean number densaty
(n/ng)

These curves are of the form

_ -(ch*c.Avcant+con’ec, '
ATi(M) = e ‘ - - .

where N = y/{x-x_}.

o a3 20-JU -bo te LY osU
1ur T I 1
|
! ! Lin YA
i . e .
. . - 234
i Bl 8T D32
8+ -
! b ¢
{ n -
; 6.6 Dl
(XS - . .
ATty) ¥
T | . g 90
at, H !
4:,_ ] $ o]
' }
; X | = “ ae
. W mmmme- ': —w
; . |
2 | TR,
: 1 [
| )
]
) |
0" hE .
- 19 - e - Q8 o0 bE] 10 5
Y/1x-x0)

Figure 2. Data for the case pz/p1 = .25, c:/c._- 3.

The major concepts involved in the analys:is of
the data were derived for the laser incuced
fluorescence (LIF) technigue in ligquids by
Koochesfahani & Dimotakis (1986). cme differences
exist, however, which will be described here.

Starting with two distinguishable fluids, we
will label the pure fluid from the low speed siae
as § =0, and pure fluid from the high speed side *-

E=1. We define § as the (conserved scala

composition, with intermediate values, 0<§ <1,
corresponding to the fraction of high speed £luid
in the mixture. If we were able to maxe

measurements with perfect
and space, a properly normalized histogram of
composition sampled at discrete times would
approximate the probability density function (PDF)
of composition, P(E). Although laboratory
measurements of sufficient resolution can not
currently be made in high Reynolds number flows,
for the present discussion it is only necessary to
accept the exlstence of the PDF. A conceptual
model of the PDF of composition appears in Fig. 3.

resolution in both tim

Next we apply the change of variables ¢rcm
composition to temperature shown in Fig. 4. This
temperature dependence, aT(5), represents the
temperature rise above ambient which results from a
fast, irreversible exothermic reaction occuring
between two fluids containing reactants mixed at a
composition § (eg. Bilger 19801. For the chemical
system used here, the stoichiometric mixture ratio
is equal to the ratio of the freestream reactant
concentrations, ¢ =cs/c,.
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Tigure 4. Transform between Composition and

Temperature Rise

The value

)
1+0

composition and the
temperature rise at this composition is the
3iapatic flame temperature rise (AT¢). The PDF
c{ temperature rise, PT(AT), 13 given by

o =

is the stoichiometric

?.(aT) = i{&,op[goi] s (1-gy) 9[1-(1-50)

1.

this

AT,

guaranteed by
1£ P is properly normalized.

Normalizazion of Py is
transform,

If we then relaze ~he mean temperature, at a
speciiic value of 9, to P we optain

= AT, - -
= — P.(AT) 2(AT)
AT, “ T, -
';0 t 3 .- ‘Lz
- = P51 23 - = %) 2}
s e S 0

The second form results frem a change c¢f wvariacles
from AT back tc §.
There are two

intereszing limits irTneaiately

apparent £frcm  this expressaion. These arce the
"flip” experiments described in Koochesfahan:,
Dimotakis § 3roadwell (1985). If we ler =he

stoichiometric composition €°—o 1, zhen the sezcnz
integral vanishes and we are left with
AT J

s

’
pe

Al

EP(E) ¢ =

L

(2

0
Here I is the mean composition and also represents
the mean high speed £luid mixture fraction. I we
let E,o—» 0, the first integral vanishes and we are
left wath

|

(1-¢) P(§) 4% = 1 -

>
1<}
"

Here the roles of {=0 and § =1 have been reversed
(ie. 0—>1/0) and therefore E—1-8% , waicn
represents the low speed fluid mixture fraction.

It is necessary to consider an aspect of the
data which affects this analys:s. Previous
experimental work (Konrad 1976, Koochesfahan: 3
Dimotakis 1984) demonstrated that there is a f:n:te
probability of observing pure fluid from eacn cf

the freestreams in the interior of the laver.
Consequently, we must admit integraple
singularities (delta functions) in P(&) at <«ne

values =0 and £=1. The process of taking :h
limit in each case above relied on the integrand
teing finite at these points, though delta
functions at any other value of & would not pese a
problem. Note that measurements of temperature
cannot distinguish between pure high-speed or pure
low-speed fluid since AT(0) =AT(l) =0 . Because
the transform introduces an ambiguiity az poinzs
where the PDF is singular, the connecticn tetween
mean temperature and mean composition cannot be
made. However, since this ambiguity arises from
the probability of seeing pure fluid from the lean
reactant freestream, it can be avoided :f we
restrict our attention to the molecularly mixed
fluid (compositions § =20, 1).

We have examined how the mean temperature r:se
is related to the mean composition. Another
useful, though perhaps less precise, interpretation "
is that in these limats AT/AT¢; measures the
amount of flv:d oraginating in the lean reactant
freestream.

-
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agilding ¢n 3 1idea, we can define two reduced

cemperature prcfiles as
g _ L1-€
8.(y) = — AT(y) < ] £ ety al
- AT, s
anc
-3 _ .t .
8.ty) = STy s ] b ey et
*£ €

An arbitrary small numper, €, has been introduced
1n tne .imits of integration solely to :indicate
shat cosatributions from the pure fluid originating
from either stream have been excluded. Note the
dependence on the spatial coorainate, y, which
appears in these expressions. This dependence was
lefs :mplicit to the present but will be explicitly
included for the remaincder of this discussion.

The limits discussed above may now be
reexamined. As io approacnhes 1, the equality in
the £first expression is realized and 6; becomes
equal to the amount of high speed £luid which 1is
molecularly mixed. Similarly, in the limit of
30—0, 6> measures the amount of low speed fluid
wnich 1s molecularly mixed. As shown in Fig. 4,
tne normalization has been chosen such that for any
cther stoaichiometric ccmposition, 63(y) and 8a(y)
provide censervative estimates for the profile of
~:xed £luid which originated from the respective
freestream.

We can now estimate the probability of mixed
£luid at any composition, py(y). In particular, if
~e agd the recuced temperatures we okttain

- R
0.(y) ~ B0y € ] (1-5) P(E,y) df + J EP(E,y) af
£ £
1-€
- I P(g,y! d§ - Poty)
€

where <this 13 again a conservative estimate for
this guantity. This particular result was
introduced in a previous discussion (Dimotakis
1397) in a somewhat more direct fashion. There,
the nuxed fluid function, 8,(§), was defined to be
the normaiized sum of the temperature rises for the
"{lip" exper.ments, i.e.

AT(E:E ) AT(E:1-8 )

g 1% = (1—&)( + )
T : ATg (&) ATg(1-5 )

This transform provides an estimate for the amount
s mixed f£.uyid through the relation

1

[ 8 5y P,y d§ .
Q

pm(y) 2

As shown in Fig. 5, this estimate will be quite
300d for small values of §,. Note that the figure
corzesponds o the stoichiometry £, = &g at which
trese experiments were performed. These two
approaches are clearly equavalent.

6,18

‘. s ST

Figure 5. Mixed fluid Function for §_ «=1/9
(9.=1/8).

Having an estimate for the amount of mi.xed
£luid crag:inating from each stream separately, we
can also estimate the average ccmposition prcflle
of the mixed fluid, i.e.

,1-€
| trdy a
Enly) = — ik
3 . -
m 1-e 8, (y) + 8. (y)
I P(§,y) d§ ‘
e

Note that this expression differs from that for the
mixed fluid probability in one important respec:.
Herxe the quantity §m(y) is expressed as the
quotient of two approximations and cannot a& gr:ior:
be said to represent a bound of the actual value.

Results

Fig. 6 shows the result of adding the reduced
temperatures from the flip experiments <for six
density ratios. Shown is the mixed £fiuid
probability, pp(y), versus position within the
mixing region normalized by the width §. Also
shown in the column at far right is the integral of
each profile in these coordinates, Pp. This
quantity represents the integral probability of
mixed fluid and can also be thought of as the mean
volume (or mean mole) fraction occupied by mixed
fluid within the boundaries of the laye:.

Konrad used the probability of mixed flu:d as
a measure of the intermittency. In agreement with
his measurements, we find that for all density
ratios the probability of finding unmixed fluid in
the center of the layer is low. This 1s contrary
to the liquid shear layer result (Koochesfahani &
Dimotakis 1384) where this probability was found to
be as high as 0.45 . #hen normalized in the same
manner, our measurements of the mixed fluid
probability distribution are in good agreement with
Konrad’s intermittency profiles. This includes the
uniform density case in each study and a comparison
of the present pr/py =4 case with Konrad’'s
pP2/py =7 case.
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figure 6. Mixed Fluid Probability Distributions.

The small systematic differences displaved by
~rese ¢.striDut:ions are interesting. They could be
a ranifestazicn cf the weak effects of finite neat
re.ease 10 Tthese experiments. Note that the
censity decrease owing to heat release 1s different

for each experiment of the ’‘flip’. This could

rearrange the distripution of the mixed fluid

grcpacility slightly for each case and thereoy
s

zause =ne sum of the reduced temperatures to be
skewea noward one sade. Since this hea. release
et 1s partitioned within each of the flip pairs
n a fash:ion which depenas on the density ratio,
s could resuit in the observed systematic trend.

DR A N 1

T 1S .mportant to note that although this would
zeflect on the accuracy of the local distributions,

wouid not affect tneir integrai values, e.g.
P whether =this trend in the profiles is a

result of density ratio or the effect of the slight
reav release will have to be determined by
sucsequent experiments.
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Mixed Fluid Number Density and Total
Numper Density Profiles.

Figure 7.

The mean number density of product and mean
molecular number density were also determined for
eacn exper:ment. The results of adding the number
censity of product for the flip experiments are the

pell chavea profiles 3hown in Fu3. 7. Trese
distribur.ons represent the mean nurdber density né
mixed £lu1d, fmty), «within the snear layer. linte
zhe similarity of thnese aistricuz:cns despite a
variation .n  whe =ansity zatic of a faztor of

chrrey. Their 1integrals (8,) snown in the far
right column, represert the tctal amount cf mixed
fluid expressed as a thickness. The lacxk cf

variation wilh density ratio shown by TH'S quantity
13 particularly noteworthy, with che mixea fluid

¢racz:ion, B8./8, changing by liess tnan 6%.  Also
shown in Ti1Q@. 7 are the profiles c¢f mean rnumber
density for each case. The integrals of molecular
numper aensity, &, can fe usea t> estimate the

release. ln eacn
trnat the
ceen

dilataticen resulting £from heat
case, 1 -8"/8 :s reiow (.1, inzicating
average nurmber density :in the _ayer nas
reducea Ly less than 10% . Using the sare
approxaimations, the mean nurber density cf m~mixea
fluid can be d:vided by the mean numper censity to
estimate the profiles of mixed fluid mole fracticn.
These profiles are shown 1n Fig. 2, In trhe far
right column is the integral mole fraction of r..xed
luid (§.) determined using this appreach.
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Figure 8. Mixed Fluid Mole Fraction Profiles.

Note the <close similarity in the data in
Figs. 6 and 8. The mole fraction profile,
Am(y)/n(y), differs from the mixed fluad

probability profile, ppLiy), only because we have
taken the quotient of time averages, rather that
the time average of a Qquotient. The relataive
insensitivity of these profiles to this averaging
rrocess indicates that the statistics are not too
pathological. This suggests that possible
resoluticn inadequacies in this work are not
serious in this context, and provides support for
the approximations used to produce Figs. 7 and 8.
Remember that, in the limit of zero heat release,
Figs. 6, 7 and 8 would be identical. All four of
the integral quantities, Pg, 8, Oy and 8" are
plotted in Fig. 9 versus the freestream density
ratio. Note the insensitivity of these quantities
to the factor of thirty change in density ratio.

Using the approximations detalled in the
analysis section, the mean composition profiles of
the mixed fluid, §n,(y), were also estimated. Shown
in Fig. 10 are the composition profiles for each of
the density ratios investigated. With the
exception of an offset or average composition which
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Figure 10. Mixed Fluid Composition Profiles.

1s dependent upon density ratio, the similarity
betveen composition curves is noteworthy. As noted
Sy Konrad, the mean composition of the mixed fluid
does not extend to the <two limits, L=0,1.
Nevertheless, the variation is not small, with
important implications for models which approximate
the mixing in the gas phase layer as independent of
the transverse coozdinate. No strong conclusions

should be drawn, however, owing tc the
fPfoximations used to arrive at these profiles and
the possibility that some details of these

distributions might be the result of the small heat
release.

Dimotakis (1986) has proposed a theory for the
entrainment into the mixing layer based on
Tonsideration of the large structure dynamics. For
4 velocity ratio c=Uz/U; and a density ratio
S=py/p-, he proposed e estimate of the
entrainment ratio i1nto the mixing layer given by

l-¢

E (z,3) = s3/2 (1 +0.68
leg

In his conceptual model of mixing and entrainment,

the evolution of a "typical™ vortex as viewed in
i8S rest frame, Dimotakis envisions E, 43 being the
volume flux racio of fluid entering the lactge scale
structuzre from the freestreams. This ratio a1s
related 20 both the flux ratic and the camposaitaion
ratio, and as such, cannot be related rigorously to
a tunctaon of the field quantities. However, since
some moaels (e.g. Broadwell Breidental 1982,
Dimotaxis 1987) treat the mixang process as being
independent of the transverse coordinate ana it is
prec:sely i1n this case thaz the distinction tetween
f£lux anad composition ratios vanisn, a comparison 13

in orger. If we proceed under this assumption and
further assume that the fluids mix at the ratio
tney are entrained, we arrive at a preaict:ion for
the average mixed fluid composition, fcr the
present velocity ratio, of
E_(r,s) 1.33472
E - - - —————r
m LvE (z,3) 1+1.3s8°"*

Shown in the far right column of Fig. 10 are zhe
average mixed fluid composition for each density
zazio. A comparison Detwveen our inferrzed
experimental values and the theoretaical estimate
for the average composition versus density ratio,
is shown in Fig. l1. It 1s important to note that,
anaiogous to the integrals of mixed £luid
probability, these vslues are not affected by the
heat release as are the distributions. However,
the small systematic variation between data and
theory could stem from several sources. Most
obviously, one could question the Dbasic premise
which led to the comparison, that the distinction
between flux and composition ratios is negligible.
Secondly, there is some evidence based on flow
visualization that the fluids may not mix at the
same ratio as they exist within the mean boundary
of the tucbulent region. Still Schlieren
photographs indicate that regions within the mix:ing
layer of unmixed fluid increase in size on :the
light fluid side as density differences increase.
Finally, the determination of mixing Dby chemical
resction implicitly assumes that diffusivities of

all the species involved are equal. Thes s
clearly not cthe case when H is one of the
reactants. The extent to which trhese

affect the inferences drawn f:onm
is being investigated.

considerations may
these measurements

Conclusions

Based on the similarity of the profiles
Figs. 6,

in
7 and 8 we conclude that the distribution
of mixed fluid within the two-dimensional shear
layer 1s relatively 1insensitive to f{reestream
density differences. Thas is reinforced by the
invariance of the integral amounts (Fig. 9) whach
differ Dby only 10V for all density ratios
investigated. This is not the case for the
composition of mixed fluid, which is quite
sensit.ve to the density ratio. The average
composition of mixed fluid in the layer varies from
nearly 1:2 to over 2:1 as density ratic increases.

Small differences notwithsatanding, the agreement
between theory based on the large structure
dynamics and experimental results 13 compelling
evidence for the cen::cal role of the large

structures ain the mixing process.
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F.gure 1l1. Average Mixed Fluid Composition versus

Densizy Rat:io.

Jur results indicate that simple models can
represent several aspects of mixing in a turbulent
non-homogeneous shear layer. When normalized by
zhe local width of the mixing regaon, the
distribution of mixed fluid could be modeled as a
function of the position in the layer only. Also
the composition of the mixed fluid could be
represented by an average composition which 1is
Fuaiitatively predicted by theory, multiplied by a
function of position only.
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TURBULENT SHEAR LAYER MIXING WITH FAST CHEMICAL REACTIONS

oy,
Paul E. DIMOTAKIS

Graduate Aeronautical Laboratories
California Institute of Technology
Pasadena, California 91125

ABSTRACT

A model is proposed for calculating molecular mixing and chemical
reactions in fully developed turbulent shear layers, in the limit of
infinitely fast chemical kinetics and negligible heat release. The
model is based on the assumption that the topology of the interface
between the two entrained reactants in the layer, as well as the
strain field associated with it, can be described by the similarity
laws of the Kolmogorov cascade. The calculation estimates the
integrated volume fraction across the layer occupied by the chemical
product, as a function of the stoichiometric mixture ratio of the
reactants carried by the free streams, the velocity ratio of the shear
layer, the local Reynolds number, and the Schmidt number of the flow.
The results are in good agreement with measurements of the volume
fraction occupied by the molecularly mixed fluid in a turbulent shear
layer and the amount of chemical product, in both gas phase and liquid
phase chemically reacting shear layers.

1.0 INTRODUCTION

Understanding chemically reacting, turbulent free shear flows is important not only
for the obvious technical reasons associated with the engineering of a variety of reacting
and combusting devices but also for reasons of fundamental importance to fluid mechanics

and our perception of turbulence.

From a theoretical point of view, chemically reacting flows provide important tests
of turbulence theories by adding to the dimensionality of the questions that can be asked
of turbulence models. To compute chemical reactions in turbulent flow, the physics of
reactant species turbulent transport and mixing need to be described correctly down to the
diffusion scale level. This is a much more stringent specification than needs be imposed

on momentum transport turbulence models.

From an experimental point of view, a fast chemical reaction provides a probe with an
effective spatial and temporal resoclution and sensitivity that is usually unattainable by
conventional direct flow field measurement techniques in high Reyno.ds number turbulent




flows. Chemically reacting turbulent flow experiments are therefore to be regarded as a
complementary means of interrogation; a valuable adjunct to the more conventional probing

of the behavior of turbulent flow.

A broad class of current efforts to understand chemically reacting turbulent flows is -
based on classical turbulence formulations founded on the Reynolds-averaged Navier-Stokes
equations. In such formulations, species transport is conventionally modeled as
proportional to the gradient of the corresponding mean species concentration, with an
effective diffusivity that is prescribed to be some function of the flow. See Tennekes &

Lumley (1972) for an introduction. Estimates of mixing at the molecular scale must be
modeled separately, in these formulations, in a manner that unfortunately cannot be
addressed without additional assumptions, that are essentially ad hoc. See Sreenivasan,
Tavoularis & Corrsin (1981), the introduction in Broadwell & Breidenthal (1982) and the

discussion in Broadwell & Dimotakis (1986) for a discussion of these issues.

A different approach is taken by modeling efforts based on attempts to write
transport eguations for the probability density functions (PDF) of the conserved scalars,
or joint PDFs for scalars, and/or the (vector) velocity field and pressure. See Pope
(1985) and related work by Kollmann & Janicka (1982) and Kollmann (1984), for example.
These efforts, which are in principle capable of addressing the issues of transport and
mixing in a wunified manner, must nevertheless resort to essentially equally ad hoc
assumptions to close the problem. In other words, while having the correct fluctuation
statistics through the relevant PDFs, and conditional statistics through one-time joint
PDFs, would undoubtedly permit the molecular mixing and resulting chemical product
formation to be computed correctly, it would appear that those PDFs are no easier to

obtain than the ab initio solution of the original problem.

Finally, a model was recently proposed by Broadwell & Breidenthal (1982) which is not
based on gradient transport concepts. This model will be discussed below in the context
of recent data on chemically reacting shear layers in both gas phase and liquid phase

shear layers.

1.1 Recent experimental results

The aspirating probe (Brown & Rebollo 1972) measurements of Brown & Roshko (1§974),
and the measurements of Konrad (1976) of the probability density function of the high
speed fluid fraction in a non-reacting, gas phase shear layer suggested that the mixed
fluid composition does not vary appreciably across the width of the layer, even as the .
mean high speed fluid fraction varies smoothly from unity on the high speed side, to zero
on the low speed side. Additionally, as Konrad recognized, the most likely values of the
mixed fluid high speed fluid fraction seem to be clustered around a value dictated by the

shear layer entrainment ratio. In the light of these results, the smooth variation of the

—



mean is then to be understood as the varjation of the local probability of finding:

a. pure high speed fluid,

b. mixed fluid,

and,

c. pure low speed fluid,

as we traverse the width of the layer.
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FIGURE 1. Temperature vs. time time traces for ¢ = 1 (ATg1p « 93K).  High
speed (Uy = 22m/s) fluid (1% Fp + 99%N2) on top trace. Low speed
(U; = 8.8m/s) fluid (1% Ho + 99% N2) on bottom. Probe positions at
y/x = 0.076, 0.057, 0.036, 0.015, -0.008, -0.028, -0.049, -0.070.
Partial record of 51.2ms time span (8Tp.y = 81K). From Mungal &
Dimotakis (1984, figure &4b).

Tne near uniformity in the mixed fluld composition, apparent in Konrad's passive
scalar non-reacting shear layer experiments, can be seen to have an important counterpart
in the gas-phase, chemically reacting shear layer experiments (e.g. Mungal & Dimotakis
1964). Measuring the temperature field in the reaction zone of a mixing layer bringing
together H, and F, reactants carried in a N> diluent, it is found that within the
discernible regions that can be associated with the interior of the large scale structures
the temperature was nearly uniform. See figure 1. The resulting mean temperature
(chemical product) profile that peaks in the interior of the reaction zone is more a
corseguence of the variation of the fraction of the time a given fixed point is visited by
the hot large scale cores (duty cycle), rather than the variation of the temperature field

within a core. See figure 2.
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FIGURE 2. Peak, mean and minimum temperature rise observed

for total data

record at each station. Experimental parameters as in figure 1.
Smooth curve least squares fitted through mean data points. From

Mungal & Dimotakis (1984, figure 4c).

These results and conclusions are in good agreement with the results of Fiedler

(1975), who measured the temperature with a fair temporal/spatial resolution at several

points across a shear layer, one free stream of which was marked by a small temperature

difference serving as a label for the passive conserved scalar.
reacting and non-reacting liquid phase shear layers of the PDF of

fraction also corroborate these findings. See figure 3.

Measurements in both
the high speed fluid

FIGURE 3. Probability density function of the high speed fluid mixture fraction

in a liquid layer (Up/u; = 0.38, Re = 2.3x10M).

E = 0 corresponds

to low speed fluid, £ = 1 corresponds to high speed fluid. From

Koochesfahani & Dimotakis (1986, figure 10).




An important conclusion can be drawn from these data, which is also consistent with
the results of the flow visualization studies and the earlier pilot, 1liquid phase,
chemically reacting experiments in Dimotakis & Brown (1976), as well as the study of
liquid phase reacting layers by Breidenthal (1981), namely that the large scale motion
within the cores of the shear layer vortical structures is capable of transporting a small
fluid element from one edge of the layer to the other, before any significant change in
its internal composition can occur. During this transport phase, initially unmixed fluid
within the fluid element will mix to contribute to the amount of molecularly mixed fluid,
but will do so to produce a range of compositions clustered around the value corresponding
to the relative amounts of unmixed fluid originally within the small fluid element. This
is the reason why the mixed fluid composition cannot exhibit a substantial systematic
variation across the layer and, in particular, need not be centered about the value of the
local mean. This observation represents an important simplification to the problem, as it
suggests that it may be Justified to treat the composition field in a uniform manner

across the shear layer width.

In the ges phase, hydrogen-fluorine experiments of Mungal & Dimotakis (19°"), the

stoichiometric mixture ratio ¢, defined by

cp2/co1
(cpa/epr)s

was varied, where c¢g» and cgq are the 1low and high speed free stream reactant
concentrations respectively, and the subscript "s" in the denominator denotes the
corresponding chemical reaction stoichiometric ratio (unity for the H2 + Fp reaction). The
quantity ¢ can be viewed as representing the mass of high speed fluid required (to be
mixed and react) to exactly consume a unit mass of low speed fluid. For uniform density,
chemically reacting shear layers (low heat release), ¢ can alsoc be interpreted in terms of

tne requisite volumes of the free stream fluids for complete reaction.

For a given value of ¢, the total amount of chemical product in the mixing layer can

be expressed in terms of the integral product thickness

by = —— 5 cply,¢) dy, (1.2)
€01 e

where the subscript 1 in ép; denotes that cgy, the high speed stream reactant

concentration, was used to normalize the mean chemical product concentration profile

Cply,d). Using the mean temperature rise AT(y,¢) as the measure of product concentration,

and normalizing the transverse coordinate y by the total width of the layer &, we can also

write

6P1 ® AT(y,$)
- - lJ T_X'Ldy . (1.3)
5 § L bTp m(=)

(1.1)-




If we keep cpny fixed and vary ¢ by, say, increasing cp2, also keeping the heat capacities
for the free stream fluids matched, we find that the dependence of the adjabatic flame

temperature rise on ¢ is given by

2
BToim(e) = ;%—Arrlmu) . (1.4)

where ATg n(1) is the adiabatic flame temperature rise corresponding to a stoichiometric
reactant concentration ratio. Note that, for a fixed high speed stream reactant
concentration <¢py, the normalizing temperature in equation 1.3 is given by
ATpyp(®) = 2ATr1p(1) . The experimental values for the product thickness 8p1/é, in such
an experiment, are plotted in figure 4.
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IGURE 4. Normalized §py/5 HF gas phase chemical product thickness data vs.
stoichiometric mixture ratio ¢ (Mungal & Dimotakis 1984).

Us/Uy = 0.38, Re = 5,5.10”. Smooth curve drawn to aid the eye.

In the data in figure U4, the width of the layer & was estimated by 63, which is
defined as the extent across the layer where the product concentration (mean temperature
rise) has fallen to 1% of its peak mean value. To remove the small differences in the
values of &, computed from the temperature profiles measured for each ¢ (see Mungal &
Dimotakis 1984, Table 1), a fixed (average) value for &/x (=0.165) was used in




normalizing the data Iin figure 4. We note that the 1% width 6y, i{n both the gas phase
reacting layer data and the liquid phase measurements of Koochesfahani & Dimotakis (1986),
was found to be very close to the visual shear layer width &,jg of Brown & Roshko (1974).
As can be seen in the data in figure 4, as ¢ is increased from small values, the amount of
chemical product at first increases rapidly. Beyond a certain value, however, a further
increase in ¢ (increase of the low speed stream reactant concentration) does not result in
a commensurate increase in the total chemical product, as the fluid in the shear layer is
low speed reactant rich and much of the entrained high speed stream reactant has already

heen consumnaed. The smooth curve in figure 4 was drawn to aid the eye.

A slightly different definition of product thickness, which avoids the asymmetric
choice of wusing one stream or the other as a reference, is to use the adiabatic flame
temperature AT{lg;(@) to normalize the temperature profile, corresponding to each value of
$. This yields a new normalized product thickness 6p/§, given by

% [ AT(y,¢)

1
- - d (1.5)
5 s L aTe(e) &

whizh represents the volume fraction occupied by chemical product. Note that the

integrand 1is in the units of the normalized mean temperature rise profile, as plotted in

figure 2, and that 8p/8 = (6p1/6)/£® , where

£y = —— . (1.6)

For egqual density free streams, negligible heat release, and a given free stream reactant
stoichiometric mixture ratio ¢, the gquantity £® represents the high speed fluid volume
fraction, in the mixed fluid, required for complete consumption of both reactants. A
voiume [raction £>&y in the molecularly mixed fluid, for example, corresponds to an
excess of high speed fluid, relative to that required by the stoichiometry of the
reaction, and would result In complete consumption of the low speed reactant in the
mixture, and a remainder of unreacted high speed fluid. A plot of the experimental values
of 8p/¢ for the hydrogen-flucrine gas phase data, versus E4 » appears in figure 5. The
smzoth curve through the gas phase data of Mungal & Dimotakis (1984) denoted by circles is
the sams curve that appears in figure U4, transformed to the coordinates of figure 5. The
data point denoted by the triangle corresponds to the similarly defined chemical product
volume fraction in a liquid phase two dimensional shear layer, as measured by
Koochesfahani & Dimotakis (1386) at the sare free stream speed ratio and comparable

Reynolds numder.
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FIGURE 5. le’.emical product ép/s volume fraction data vs. stoichiometric
mixture fraction €s. Circles from gas phase Mungal & Dimotakis

(1984) data (see figure 4). Triangle from liquid phase Koochesfahani
& Dimotakis (1386) data (Up/Uy; « 0.4, Re = 7.8x10%). Smooth curve
transformed from that of figure 4.

Since (for equal species and heat diffusivities) ATgyp(¢) is the highest temperature
that can be achleved in the reaction zone, the ratio &p/§ represents the volume fraction

occupied by the chemical product within the mixing zone and is a measure of the shear

layer turbulent mixing and chemical reactor "efficiency". 1If the two reactants were
entrained from the two free streams in such a way as to produce molecularly mixed fluid
everywhere within the layer at a single-valued composition corresponding to a mixture
fraction &,, then the resulting temperature profile would be a top-hat of height ATpip(e)
and width §, resulting in a value of 8p/8 of unity. This clearly represents the highest
pcssible total chemical product that can be formed within the confines of the shear layer
turbulent region. If, on the other hand, the mean temperature rise profile was a triangle
whose base was equal to 6 and which reached ATeip(e) at the apex somewhere within the
layer, then 8p/6 would be equal to 1/72. It is interesting that, in these units, the gas
phase data (circles) in figure 5, for all the values of the stoichiometric mixture ratio

investigated, are in the relatively narrow range of Sp/6 = 0.31£0.03.

Comparison of the total amount of chemical product measured in gas phase reacting

layers (Mungal & Dimotakis 1984), and liquid phase reacting layers (Breidenthal 1981,

length




Koochesfahani & Dimotakis 1986), points out another important feature of these data; at
comparable flow conditions, the amount of chemical product formed at high Reynolds numbers
is a function of the (molecular) Schmidt number S¢ = vw/D of the fluid, where v 1is the
kinematic viscosity and D is the relevant specles diffusivity. 1In particular, roughly
twice as much product is formed in a gas phase chemically reacting shear layer (Sc = 0.8)

as in a liquid phase layer (Sc = 600).
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FISURE 6. <Cnemical product ©&p/gs volume fraction versus Reynolds number.
Circles and squares are for gas phase data (Mungal et al 1985) at
¢ = 1/8. Circles are for initially laminar splitter plate boundary
layers, squares for turbulent boundary layers. Triangles for liquid
phase data from Koochesfahani & Dimotakis (1986), at ¢ = 10.

Finally, in a further investigation in gas phase reacting shear layers, the Reynolds
number was varied over a range of almost an order of magnitude, keeping all other
conditions as constant as was feasible (Mungal et al 1985). The resulting data for é&p/s,
for a fixed stcichiometric mixture ratio of ¢ = 1/8, are plotted in figure 6. It can be
seen that there is a modest but unmistakeable decrease in the total amount of product in
the layer as the Reynolds number is increased. The authors estimate that, at the
operating conditions for those experiments, a factor of 2 increase in the Reynolds number
results in approximately a 6% reduction in $p/§, the chemical product volume fraction.

Also included in the same plot, for comparison purposes, are the reacting liquid layer
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data of Koochesfahani & Dimotakis (1986) at a stoichiometric mixture ratio of ¢ = 10. As
can be seen, the data indicate a much weaker Reynolds number dependence of the liquid
phase product volume fraction 6p/s. wWe note, however, that the lower Reynolds number
liquid data point may be at a value of the Reynolds number that is too close to the shear
layer mixing transition (Konrad 1976, Bernal et al 1979, Breidenthal 1981) and the flow

may not have attained fully turbulent behavior.

1.2 Entrainment ratio for a spatially growing shear layer

An important conclusion drawn by Konrad (1976) was that a spatially growing shear
layer entrains fluid from each of the two free streams in an asymmetric way, even for
equal free stream densities. In particular, for equal free stream densities (pp/py = 1)
and a free stream speed ratio of Up/yy = 0.38, Konrad estimated the volume flux
entrainment ratio E to be 1.3. For a free stream density ratio of po/py = 7 (helium high
speed fluid and nitrogen 1low speed fluid), and the same velocity ratio, he estimated an

entrainment ratio of E = 3.4,

This behavior can be understood in terms Of the upstream/downstream asymmetry that a
given large scale vortical structure sees in a spatially growing shear layer. Simple

arguments suggest that the volume flux entrainment ratio can be estimated and is given by

(E 1/2

Py

(1+2/x) , (1.7a)

)

where £/x is the large structure spacing to position ratio. See Dimotakis (1986) for the

arguments leading to this result.

Konrad's data support the hypothesis that < &/x >, the ensembie averaged value of &/x,
is independent of the free stream density ratio py/py . Fitting available data for &L/x,

one finds that the relation

<a/x> = 0.68 1°T (1.75)
T+r

where r = U,/y; {s the free stream speed ratio, is a good representation for this
quantity. It can be verified that equations 1.7 produce estimates for E that are in good
agreement with Konrad's measurements. Finally, we note that to the extent that /x is a
fluctuating quantity, we would expect, on the basis of equation 1.7a, that the entrainment
ratio E should exhibit corresponding fluctuations. We will develop this idea in the

discussions to follow and incorporate its consequences in the proposed model calculations.




In the context of chemically reacting flows, it is important to recognize that fluid
homogenized at the entrainment ratio E produces a (high speed fluid) mixture fraction gg

given Yy,

(1.8)

For E > 1, as is always the case for matched density free streams, this corresponds to a
value for &p that is greater than 1/2. The resulting mixture fraction £g has a special
significance in the shear layer, as Konrad recognized, and helps explain the large
differences in the composition fluctuations between his equal free stream density data and
his helium/nitrogen free stream data. See sketch and discussion on page 27 in Konrad
(1976).

This picture suggests a zeroth order model for mixing in a two-dimensional shear
layer in which the reactants are entrained at the ratio E, as dictated by the large scale
dynamics, and eventually mixed to a (nearly) homogeneous composition in which the
distribution of values g of the resulting mixed fluid mixture fraction is clustered around
£E by the efficient action of the turbulence. A useful cartoon is that of a bucket filled
by two faucets with unequal flow rates, as a laboratory stirring device mixes the
effluents. For all the complexity of the ensuing turbulent motion, we would expect to
find a distribution of mixed fluid compositions in the bucket clustered around the value
of the mixture fraction given by equation 1.8, where E, in our cartoon, would correspond
to the ratio of the flux from each of the two faucets. In fact, as the the faucet flow
rate is decreased relative to the mixing rate, the mixed fluid composition probability

density function is tightened around the value g with p(g)df + 6(E—-EE) dE in the limit.

The asymmetric entrainment ratio also helps explain the outcome of the chemically
reacting "flip" experiments, as they have been coined. In particular, it is known that if
the concentration of the reactants carried by the two free streams corresponds to a
stoichiometric mixture ratio ¢ = 1, then one obtains more or less total chemical product,
depending on whether or not the lean reactant is carried by the free stream fluid that is
preferentially entrained. This can be seen in the gas phase reacting shear layer data
pairs for ¢ = (1/4, 4) and ¢ = (1/8, 8), which correspond to "flipping" the side on which
the lean reactant is carried. Compare the coresponding pairs of values for §p/8 in the
data in figure 5. See figures 9 and 17, and related discussions in Mungal & Dimotakis
(1984), and also the liquid phase "flip" experiments documented in Koochesfahani et al
(1983), and in Koochesfahani & Dimotakis (1986) for additional information and

discussions.
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1.3 The Broadwell-Breidenthal model

In the Broadwell-Breidenthal (1982} mixing model for the two-~dimensional shear layer,

tne entrained fluid is described as existing in one of three states:
1. recently entrained, as yet unmixed fluid from each of the two free streams,

2. homogeneously mixed fluid at a composition Eg corresponding to the entrainment
ratio E (equation 1.8),

and,
3. fluid mixed at strained laminar interfaces (flame sheets).

In this picture, the total chemical product is computed as the sum of the contributions
corresponding to the homogeneously mixed fluid, and the contribution from the flame
sheets.

4
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FIGURE 7. Normalized temperature rise for free stream fluids at a
stoichiometric mixture fraction £¢ = ¢/(¢+1). as a function of the
high speed mixture fraction E. Dashed triangle indicates
correspondding function for a "flip" experiment and the resulting
temperature rise for a mixture at the entrainment mixture fraction

Eg = E/(E+1).

The volume fraction in the reaction 2zone, corresponding to the homogeneously mixed

fluid at § = £z, has experienced a temperature rise (product concentration) ATH(EE. &),

ATH(KE-E@) = O4(EE.&g) x 8Tr1m(e) (1.9a)

where, for a fixed low speed stream reactant concentration, ATrlm(¢) is given by equation




1.4, OH(EE,E¢) 1s the dimensionless temperature rise, normalized by the adiabatic flame
temperature rise, that results when the two fluid elements at a stoichiometric mixture

ratio ¢ are homogenized to form a mixture fraction equal to the entrainment mixture

fraction £z, This is given by

EE
IR for EE < E¢
%o
OulEE,Eq) = (1.9b)
1-EE .
PO or > ’
1-¢, EE 2> &

corresponding to the complete consumption of the lean reactant as a function of the

resulting composition ¢, See figure 7.

The heat released (amount of product) in the strained laminar interfaces (flame

sheets), for equal species and heat diffusivities, is found proportional to

-1/2
{SceRe) F(E4) ATEIm(e) (1.10)

where F(€¢) is the Marble flame sheet function (Marble & Broadwell 1977), and given by

2
-2
F( e *
Bg) = m————— (1.11a)

In this expression, 24 is implicitly defined by the relation

e"Ll dg =
0 o+

2¢ _.2 -
J Ll . (1.11p)

2
erf(z¢) - —
™

where erf(z) is the error function. The flame sheet function F(£¢) is plotted in figure
8. We note here that in the original discussion (Broadwell & Breidenthal 1982), the
exponent for the Reynolds number dependence could be taken as -1/2 or ~3/4, depending on
whether the appropriate flame sheet strain rate was estimated from the large scales of the
flow or the small (Kolmogorov) scales, respectively. The Reynolds number exponent is
taken here (equation 1.10) as -1/2, corresponding to the large scale strain rate,
following the recommendation in the revised discussion of this model in Broadwell & Mungal
(1986).

The contributions from the homogeneously mixed fluid and the mixed fluid on the flame
sheets should be added. Normalizing the total amount of product with ATeyp(e), as in
equatfon 1.5, we obtain the Broadwell-Breidenthal expression for the product volume

fraction, i.e.

13
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p

3 ~ CHOH(EE.Ee) * cF (Sc-Re)-1/2 F(£g) , (1.12)

where cy and cp are dimensionless constants to be determined by fitting the data.

F(t‘)

L)

FIGURE 8. Marble (Marble & Broadwell 1977) flame sheet function F(E¢),

In the more recent discussion of this model, Broadwell & Mungal (1986) recommend that
the coefficients cy and cf in equation 1.12 should be determined by fitting the
experimental value for 8p/6 at ¢ = 1/8, Sc ~ 0.8 and Re = 6.6 ,10", derived from the gas
phase data of Mungal & Dimotakis (1984), and the experimental value for 8p/6 at ¢ = 1710,
Sc = 600 and Re = 2.2 x 10Y derived from the liquid phase data of Koochesfahani & Dimotakis
(1986). It should be mentioned, however, that in the latter discussion (which also models
finite chemical kinetic rate effects in two-dimensional shear layers using the
Broadwell-Breidenthal model) Broadwell & Mungal concluded, on the basis of their model
calculations, that the gas phase data of Mungal & Dimotakis (1984) and Mungal et al (1985)
were not quite in the fast chemistry limit. In fitting the two coefficients to the data,
however, we will ignore such effects for the purposes of the discussion, noting that the
differences 1in the resulting estimates for the model coefficients are not large. 1In the

notation of equation 1.12, we then obtain .




Cy = 0.27 , CF = 11,5 , (1.13)

for the Broadwell-Breidenthal model constants.
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FIGURE 9. Broadwell-Breidenthal model predictions for the 8py/8 gas phase

1
product thiuckness data of Mungal & Dimotakis (1984) at Sc = 0.8 and
Re = 6.6x104.

The curve in figure 9 represents the resulting model predictions for the gas phase
product thickness 8pi(¢)/§ data that were plotted in figure 4. The 8p/8 product volume
fraction data and the corresponding Broadwell-Breidenthal model curves are plotted in
figure 10 versus £4 . The top solid curve in figure 10 is computed for the gas phase data
(circles; Sc = 0.8, Re = 6.6 x10Y%). The dashed curve is computed for the lower Reynolds
numder ¢ = 1/10 and ¢ = 10 (inverted triangles; Re = 2.3:10“). while the dot-dashed
curve is computed for the higher Reynolds number experimental value at ¢ = 10 (upright
triangle; Re = 7.8 x 104) of the liquid phase data (Sc = 600) of Koochesfahani & Dimotakis
(1956).
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FIGURE 10. Broadwell-Breidenthal model predictions for é&p/§ vs. Le data.
Solid line for gas phase data (circles; Sc = 0.8, Re = g.6x10 :
Mungal & Dimotakis 1984). Dashed line for 1liquid phase (Sc = 600,
Koochesfahani & Dimotakis 1986) data (inverted triangles;
Re = 2.3x10"). Dot-dashed line for higher Reynolds number point
(upright triangle; Re =« 7.8x104),

It can be seen that several features of the reacting shear layer data can be
accounted for by this model. For a given Reynolds number, the 1//S¢ Schmidt number
dependence of the flame sheet part renders its contribution in a 1liquid (Sc ~ 600)
negligivble (-~ 25 times smaller) as compared to that in a gas (Sc ~ 1). Secondly, we can
see that even though the flame sheet contribution is symmetric with respect to a change
from ¢ to 1/¢, i.e. F(€¢) = F(1-£4), the homogeneous mixture contribution is not, since
OH(EE,1-E¢) = OH(EE,E¢) /E (compare the solid triangle function with the dashed triangle
function in figure 7). This allows the outcome of the "flip" experiments to be
accommodated. We note here that, for values of the stoichiometric mixture ratio ¢ close
to the entrainment ratio E, the model predicts a relatively smaller difference for the
product volume fraction between gases and liquids, than for small (or high) values of ¢.
Unfortunately, no relevant chemically reacting liquid phase data are available at present

to provide a direct assessment of Schmidt number effects in this regime.
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FIGURE 11. Broadwell-Breidenthal model predictions for &p/§ dependence on
Reynolds number. Solid curve for gas phase data (Mungal et al 1985)
at ¢ = 1/8 . Dashed curve for liquid phase data (Koochesfahani &
Dimotakis 1986) at ¢ = 10. Note that curves cross as a result of
the larger homogeneously mixed fluid contribution for the liquid
phase data at large ¢.

Plots of the Broadwell-Breidenthal model predictions for the product volume fraction
versus Reynolds number are depicted in figure 11 along with the corresponding gas phase
data at ¢ = 1/8 of Mungal et al (1985) and the 1liquid phase data at ¢ = 10 of
Koochesfahani & Dimotakis (1986). The predicted curves start at a Reynolds number of
2x10%, based on the velocity difference and the local visual width of the layer, estimated
to be the minimum Reynolds number for the quasi-asymptotic behavior to have been attained,
following the shear layer mixing transition (Konrad 1976, Bernal et al 1979, Breidenthal
1981)., The =-1id line is the model prediction for the gas phase data. The dashed line
corresponds to the model prediction for the liquid phase data. Note that the predicted
curves for the gas and the 1liquid phase product thickness curves are computed for the
values of the stoichiometric mixture ratio corresponding to the one wused in the
experiments (¢ = 1/8 and ¢ = 10 respectively) and will cross at some Reynolds number as a
consequence of the larger homogeneous fluid contribution for the (¢ = 10) liquid data.
There would, of course, be no crossing of the model predictions at the same ¢, as the gas
phase product volume fraction would always be larger than the corresponding liquid phase

estimate for each value of the Reynolds number.
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It can be seen that an additional important feature of the data is well represented
by the model. Namely, the Reynolds number dependence of the product thickness for the gas
phase data is predicted to be stronger than that for the liquid data. In fact, the model
prediction is that at a Schmidt number of 600 the liquid product thickness will be almost
independent of the Reynolds number. On the other hand, {t would appear that the
Broadwell-Breidenthal model predicts a Reynolds number dependence for the gas phase
product thickness that may be too strong (algebraic), when compared to the dependence of
the experimental data for the product thickness versus Reynolds number of Mungal et al
(1985), which suggest a dependence on Reynolds number that may be closer to logarithmic
(recall that those authors suggest a 6% drop in 6p/s, per factor of two in Reynolds
number, for the range of Reynolds numbers investigated). It may be interesting to note,
as was pointed out by these authors, that the model dependence on Schmidt number and
Reynolds number is through the product ScxRe (Peclet number) considered as a single
variable. Lastly, in the limit of infinite Reynolds number, the model prediction is that
gas phase shear layers should behave like liquids, with an asymptotic value of ép/§, the

chemical product volume fraction, given by cy OH(EE,Eg) -

From a theoretical vantage point, the Broadwell/Breidenthal model considers the mixed
fluid as residing in strained flame sheets, as would be appropriate for interfaces
separated from each other by distances large enough such that the composition £ (mixture
fraction) swings from O to 1 across them, and as homogeneously mixed fluid, as would
perhaps be appropriate at scales of the order of the (scalar) diffusion scale \p, after
the diffusion process has homogenized adjacent layers of the entrained fluids. This
partition of the mixed fluid states is an idealization, as the actual dynamics of this
process would be expected to result in a smooth transition from one regime to the other.
The authors argue that the Lagrangian time associated with that transition is short and,
therefore, intermediate states can be neglected. It can also be argued, however, that the
volume fraction associated with the molecularly mixed fluid in this intermediate state is
not small, increasing rapidly as the diffusion scales are approached by the force of the

same arguments, and is consequently not necessarily negligible.
=

Another related difficulty of the Broadwell/Breidenthal model, in my opinion, is the
assignment of the volume fraction given to the homogeneously mixed fluid at £ =~ Eg, i.e.
the value of the coefficient ¢y in equation 1.12. According to the model, cy is a
constant that, in particular, is independent of both Schmidt number and Reynolds number.
It is reasonable to expect, however, that the fraction of the mixed fluid generated at the
scalar diffusion scales of the flow will be a function of the ratio ip/§, i.e. of the

scalar diffusion scale Ap to the overall transverse extent of the flow §.

We shall return to these issues in the discussion of the model proposed in this paper

and the comparison of its predictions with those of the Broadwell-Breidenthal model.




2.0 THE PR." SED MODEL

The approach that is adopted in the model proposed here is that of viewing an
Eulerian slice of the spatially growing shear layer, at a downstream station in the
neighborhood of x, and imagining the {instantaneous interface Dbetween the two
interdiffusing and chemically reacting fluids as well as the assoclated straln field
imposed on that interface. It is recognized that both the Eulerian state and the 1local
behavior of that interface are the consequence of the Lagrangian shear layer dynamics from
all relevant points upstream of the station of interest at x. It {s assumed, however,
that this upstream history acts in such a manner as to produce a self-similar state at x,
whose statistics can be described in terms of the local parameters of the flow. In
particular, it is assumed that a Kolmogorov cascade process has been the appropriately
adequate description of the upstream dynamics, leading to the local Eulerian spectrum of

scales and associated strain rate field at x.

The justification for this approach is that while the large scale dynamics are all
important in determining such things as the growth rate and entrainment ratio into the

spatially growing shear layer, the predominant fraction of the interfacial area is

associated with the smallest spatial scales of the flow, which can perhaps be adequately

dealt with in terms of universal similarity laws. The large scales, therefore, are to be
viewed as the faucets in our cartoon, feeding the reactants that are entrained at some
upstream station into the smaller scale turbulence at the appropriate rate. These
reactants subsequently get processed by the evolution of the cascade processes upstream to
produce the local spectrum of scales at x (see discussion in Broadwell & Dimotakis 1986).
This conceptual basis is also aided by the notion of a conserved scalar, according to
which the state of diffusion and the progress of an associated chemical reaction, in the
limit of fast (diffusion-limited) chemical kinetics, is completely determinable by the
local (Eulerian) state of the conserved scalar. See, f~r example, Bilger (1980) for a

more complete description of this notion.

An important part of the proposed procedure is the normalization that will have to be
imposed on the statistical weight (contribution) of each scale i to the total amount of
molecularly mixed fluid and associated chemical product. This is done via the expected
interfacial surface per unit volume ratio that must be assigned to each scale iA. When

totalled over all scales, these statistical weights must add up to unity.

The results are first obtained conditional on a uniform value of the dissipation rate
€. An attempt to incorporate and assess the effects of the fluctuations in the local
dissipation rate e(x,t) will be made by folding the conditional results over a probability

density function for €.

In a similar vein, a refinement of the entrainment ratio idea is proposed, as noted
earlier, in which it 1is recognized that the large scale spacing &/x is a random variable

and that therefore, by the force of equation 1.7a, the entrainment ratio is itself a
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random variable of the flow. Accordingly, the results will be obtained conditional on a
given value of the entrainment ratio E, and will subsequently be folded over the expected

distribution of values of E about its average value E .

In the calculations that follow, it is assumed that the molecular diffusivities for
all relevant species are equal to each other, but not necessarily equal to the kinematic
viscosity. Heat release effects and temperature dependence effects of the molecular
transport coefficients are also ignored. This is appropriate for the liquid phase
measurements of Koochesfahani & Dimotakis (1986), and may be adequate for the description
of the gas phase measurements of Mungal & Dimotakis (1984) and the Reynolds number study
of Mungal et al (1985). The issue of heat release effects on the flow was specifically
addressed elsewhere (see Hermanson et al 1987). In computing the temperature
corresponding to the heat released in the reaction, equal heat capacities are also assumed
for the two fluids brought together within the mixing zone. While some of these
assumptions are not necessary for the proposed formulation outlined below, they allow
calculations to be performed in closed form permitting, in turn, the examination of the

dependence of the results on the various dimensionless parameters of the problem.

The proposed procedure assumes that the relevant statistics of the velocity field are
known (or can be estimated) and computes the behavior of the passive scalar process in
response to that velocity field. Finally, the procedure is "closed" in that it yields the
(absolute) chemical product volume fraction 8§p/6 in the shear layer at x, with no

adjustable parameters.

2.1 Turbulent diffusion of an entrained conserved scalar

Consider the shear layer as it entrains fluid from each of the two free streams and
is interlaced with the resulting interfaces formed between the interdiffusing free stream
fluids into a "vanilla-chocolate cake Jjelly roll" 1like structure. In describing the
ensuing interdiffusion process it is useful to consider the scalar concentration field of,
say, the high speed fluid mixture fraction g£(x,t), where g = O represents pure low speed
fluid and € = 1 represents pure high speed fluid. A space curve intersecting the
interface of the two interdiffusing fluids everywhere normal to this interface, i.e. in
the direction of the local gradient of E(x,t), would see at an instant in time a
concentration field E(s,t), where s is the arc length along the space curve. See figure
12. Note that, for an entrainment ratio E of high speed fluid relative to low speed
fluid which is greater than unity, we would expect that the intervals along the space
curve for which £ ~ 1, labeled "a" in figure 12, would be longer, on average, than the
intervals labeled "b", for which £ ~ 0. In fact, the ratio of the expected § > EF time

"a" to total time "a+ d" for adjacent layers would be given by
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TIGURE 12. Shear layer mixing interface. Inset curve depicts values of the
conserved scalar E£(s,t) at fixed time, as a function of the arc
length s on a line in the direction of Vg .

Correspondingly, for portions of the segment that may have captured "jelly-roll" layers,
which have been diffusing into each other for some time, we would expect that the high
speed fluid fraction, in the resulting molecularly mixed fluid, would tend to homogenize

to a local composition value Ep determined by the entrainment ratio E, i.e.

. <a? E
E &E - TO—D_; - -E_’T . (2.2)

In this context, £ is equal to the long term (local) value of the scalar {, resulting
from the interdirfusion of several successive £ ~ 1 and £ ~ 0 layers into each other, in a

manner that pra2serves the (conserved) scalar £. This special role of the value of the
scalar £ = Ep allows us to be more precise with the definition of the interfacial surface
between the two entrained fluids, which we will define below as the three dimensional

surface on which E(x ¢35 « gp,

The evolution of the composition E(s,t) from the initial stages, which bring together
adjacent layers of newly entrained high speed fluid (g - 1) and low speed fluid (g - 0},
to the (local) completion of the molecular mixing (g - Eg ), 1is an unsteady diffusion
protlem that proceeds under the important influence of the straining field, imposed on the
diffusion process by the turbulent velocity field. For the purposes of the present

discussion, we will idealize this unsteady diffusion process as taking place in cells of




(2.3)

extending from the zero Vg point in the £ = 1 ("a") interval on one 3ide of the interface
to the zero V£ point in the £ « 0 ("b") interval on the other. See figure 12.

Using the scale ), it is convenient to define a dimensionless space variable n = s/3i,
for each cell of extent i, where

06 £ n s 1, (2.4)

and a dimensionless time t(1), corresponding to the cell scale A, given by

) = Bt (2.5)

e

where D is the scalar species molecular diffusivity. The initial conditions for this
problem are given by

1, for 0 5 n< E
E+
£(n,0) = (2.6a)
]
: , for T <ng1,
' with adiabatic boundary conditions at the edges, i.e.
3
5;5(“'t) = 0, at n=20, 1. (2.6b)

2.2 Strain-balanced diffusion

It is important to appreciate the role of the strain imposed on the interface, in the
vicinity of some Lagrangian point of interest, in this unsteady diffusion process.

Imagine a point on the &(X,t) « fp surface associated with an arc interval A between
the two zerc gradient points on either sije of the Interface. Imagine also a Taylor

expansion of the velocity field component in the direction of the local Ve, in a frame
convecting with that point. If we denote by s the arc length measured from the

E(Z.t) = £g surface and along the space curve in the direction of Vg, we expect the local
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to be an adequate approximation for this scalar product, over the transverse extent of the
diffusing layer on either side of the interface. The quantity o(i) represents the

expected value of the local strain rate, which we should be able to approximate as

Q.
>

a(a) = = . (2.7)

> | —
Qa
ot

We note that o(X) is not necessarily identified here with -o03, the local maximum
contraction strain rate eigenvalue, where 01 2 02 2 g3 are the local strain rate tensor
eigenvalues and where oy + gp + g3 = Vey = 0. We do expect that identification to
represent an improving approximation as the viscous scales are approached, however, in as
much as we expect the scalar interfaces to orient themselves normal to the direction of
the local maximum contraction strain rate eigenvector in the limit of small scales, and
the approximate relation of equation 2.7 to become exact in that limit. This was assumed
by Batchelor (1959) in his discussion of the scalar spectrum at high wavenumbers, and
recently corroborated by the analysis by Ashurst et al (1987) of the Rogers et al (1986)

shear flow direct turbulence simulation data.

Returning to the unsteady diffusion problem, if the initial/boundary value problem
has been proceeding in the cell of extent X for a time t(A) that is large compared to the
reciprocal of the imposed (contraction) strain rate ¢{(i) then the solution to the
diffusion problem becomes independent of the time t()) and a function of the strain rate
¢(i2) only. See figure 13. Specifically, for ¢(A) » 1/t(1), the appropriate
dimensionless "time" for the problem is given by substituting 1/¢(1) for t, in equation
2.5, or

(X)) hd ——D—— as t + o, (2.8)

26(2)

Tnis can be seen directly from the form of the diffusion equation, i.e.
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FIGURE 13, train-balanced diffusion process. Shaded region indicates

thickness of equilibrium diffusion layer.

Pnysicelly, as the aspect ratio of the volume containing the strained interface
chariges, we can see that for long times the dominant species transport mechanism towards
the interface becomes the convection owing to the strain fjeld velocity normal to the
interface. At equilibrium, the diffusive thickening of the mixed fluid layer is balanced
by the steepening caused by the strain field, in a manner that tends to a time-independent
concentration gradient and diffusive flux per unit area of interface. It can be
ascertained, by solving the diffusion equation 2.9 for 3/3t -+ 0, that the resulting
equilibrium flux corresponds to its value for the unsteady, time-dependent, zero strain
problem, at the time t = 1/0(A), hence, equation 2.8 . It can be argued that, for A € §,
which will prove to be the important regime for the problem, the Lagrangian cascade time
t()) required to reach the scale A is long compared to 1/0(1), the reciprocal of the
strain rate we will associate with the scale A. Consequently, we are encouraged to
consider the additional simplification of the diffusion process, as it proceeds down the
turbulent cascade of scales, as evolving in quasi-equilibrium with the assoclated strain

rate o(i), corresponding to the scale a.

The unsteady diffusion problem in the normalized unit cell can be handled numerically
in a straightforward manner. Nevertheless, it {s worth noting that, for small (1), the
thickness of the diffusion layer will be small compared to its distance from either of the
two cell edges. Consequently, the composition field can be approximated by the infinite

domain solution to the problem, i.e.

£(z) = — 1 - err(2)], (2.10a)

1
2

where, corresponding to the boundary conditions of the problem (equation 2.6a),




z'i—(“'e_fi)’ (2.10b)
2V7

and erf(z) is the error functicn (equation 1.11b). 7nis result should be valid for times

A

that are shert such that g is not appreciably different from 1 and O at the boundaries
n = 0, 1 respectively, In which case the approximation that the imposition of the boundary
concditions at a finite distance from the interface has not been felt as yet in the

interior of the cell is a good one.

o T T
.75 |— \\ |
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Lt
©.25 — -
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c.0 0.2% 0.5 .75 1.0
n

FIGURE 14, Numerical solution sequence E£(n,t) for unsteady diffusion of the
conserved scalar in an adiabatic cell, corresponding to Ep = E/(E+1)
for E=1.3. Curves ‘computed for dimensionless times

Tnet = 1y *+ n°1g, where 1Q = 1.6x107%.

All this can, cf course, be verified by the exact numerical solution to the problem.
In particular, a numerical solution sequence, for a value of E = 1.3, 1is depicted in

figure 14, for a sequence of values of the dimensionless time t given by

Ther = tn‘n‘?“o. n=1,2,...

where 15 = 1,6 x 10'“. Note that, consistent with the area-preserving diffusion process,

guaranteed in this case by the adiabatic boundary conditions, the composition field in the




cell tends, for long times, to the value £ = E/(E+1), corresponding to the conserved

value of

1
<gln,1)> = J E(n,1)dn = £g (2.11)
0

(recall also equation 1.8 and the related discussion).

2.3 Diffusion of chemically reacting species

Consider now a fast chemical reaction, with negligible heat release, between the two
interdiffusing species. By fast here we mean that the thickness of the overlap region
required to sustain a reaction rate, per unit area of interface, that can consume the
diffusive flux of reactant towards the interface, is small compared to the diffusion layer
thickness. In this fast reaction regime, commonly referred to as a "diffusion-limited"
chemical reaction regime, the rate of production is dictated by the diffusive flux per
unit area towards the interface and not by the reaction kinetics. More importantly,
however, as a result of the inter—diffusion process, wherever the conserved scalar § is
different from O or 1, the amount of chemical product formed will be equal to that

corresponding to the complete local consumption of the lean reactant in the mixed fluid.

As noted earlier, we can use temperature rise (heat release) as a means of labeling
the formation of cheemical product. In that case, the fast chemistry assumption allows us
to compute the amount of product (temperature rise) as a function of E, by assuming
complete consumption of the lean reactant. Specifically, as was argued in the case of

equation 1.9vb,

£

te
AT(E.0) (2.12a)
0Teym(e)

, f‘or‘OSESEQ,

8(E.Ey) =

1~
== ,for'£¢S£s1.
1-E¢

where €¢ is given by equation 1.6, i.e. Eo = ¢/(¢+1), and where

2 ~
BTpyn(e) = ;%1— 8Tein(1) = 24 ATpin(1) (2.12b)

is the adiabatic flame temperature rise corresponding to the stoichiometric mixture ratio

¢. See figure 15 and discussion following equation 1.4 .




6(&y) |

LofF---

|
]
i
| '
1
i

o} 1 i -
§e
FIGURE 15. Normalized product function (temperature rise) as a function of the

stoichiometric mixture fraction §E, for a given free stream
stoichiometric mixture fraction £, = ¢/(¢+1).

Using equation 2.12 and the solution sequence depicted in figure 14 we can compute
the amount of chemical product, or temperature (heat release) along n as a function of 1.
Again, it is useful to consider the result for small "times"™ <. In particular, we have

for the total normalized temperature rise (chemical product) in the cell,

22
J B[E(Z).E¢3dz , (2.13a)
Zp - 29 zq

0(6g,1) =<8[E(Nn,1),E91> =

where 2z, and zy are the values of the similarity coordinate (equation 2.10b) at the cell
edges {(at "time" 1), i.e.

1 E 1 1
2y 2 s — (—]), 2, a — ) . (2.13b)
2/7 E* 2 2,/;(E+1
Note that
1
2 -2y = — (2.14)
2/1

(independently of E), and therefore, for small 1,

[1+erf(z)ldz} (2.15a)
Z¢

z
008y, 1) = V7 { L I 0['l -erf(z)ldz + _1
CQ -t E¢

where z, js the value of the similarity coordinate z at which the stoichiometric
composition is attained, {.e.

©
]

(2.15b)

|

err(z¢) . 2gp-1 =

R

+
—
.
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Note also that, consistently with the small t (boundary layer) approximation, the limits
of integration have been taken to infinity. The indefinite integrals in equation 2.15 can
be computed in closed form and we have, after a little algebra,

8(8y,7) « /7T F(gg) , (2.16)

where F(£¢) is the Marble strained flame sheet function (Marble & Broadwell 1977) plotted
in figure 8, obtained here by different arguments. We note that the (weak) divergence of

F(g4), as g4 » 0 and E¢ * 1, is traceable to the "boundary layer" approximation and the
additional approximation of taking 2; and zy in the integral limits of equation 2.13a to
infinity and can be lifted by folding the numerical solution sequence in equation 2.13
instead of the approximate closed form solution of equation 2.10.
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Figure 16(a)

Recall now that the v1 increase in the average temperature in the cell with "time",
as indicated in equation 2.16, is expected to be valid for small t only. For large 1, we
know that the average temperature in the cell cannot exceed the temperature (total
chemical product) resulting from the complete consumption of the lean reactant.

Equivalently, if we first homogenize the reactants in the cell, to produce a composition
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€E, and then allow them to react, we will reach an average (total) temperature rise eH(gy)

that cannot be exceeded by the transient diffusion problem. In other words,

0(E4,71) + OH(Ey) = B(EE,Eg) » as T+ =, (2.17)

where e(&.%) is given by equation 2.12. See also equation 1.9t and related discussion.

T P | ++++’H-'H+
L+
+
+
+
+
+
+
: +
R
s L + _
E
g +
+
] ] ]
-2
-4 -3 -2 -1 ]
logyp(T)
(b)
FIGURE 16.

Normalized total chemical product (temperature rise) in i-cell as a

function of the (dimensionless) time <, computed from exact

numerical solution sequence in figure 14. (a) €y = 0.2 (¢ = 1/4).

(b) €y = 0.5 (¢ = 1).

Sample exact numerical calculations of the solution to the original problem (without

recourse to the "boundary layer" approximation) are plotted in figure 16 for E = 1.3 and

for two values of £, , using the computed diffusion equation solutions depicted in figure
14. The results suggest that the "boundary layer" approximation can be used almost until
the "time" 1 the homogeneous composition temperature is attained, {.e.
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/T F(E¢) y for v < 1y

6(E¢,1) = { (2.18a)
OH(Eg) » for 1 2 T4 .

Ty, in this approximation, is the dimensionless "time" when the homogeneous mixture total
temperature rise (completion of the reaction) is attained by the boundary layer solution.

In particular, matching the two regimes at 1 = 1y, we have

95(5@)
VT & —— .
TR Fey) . (2.18b)

See figure 17.

6, ¢!
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FIGURE 17. Proposed model scaled chemical product (temperature rise) function
dependence on dimensionless time 1.




2.4 The scale diffusion "time™ 1(1)

To proceed further, we need an estimate for o(i), the strain rate associated with the
scale i. In particular, if u(A) is the expected velocity difference across a scale i, we

have the Kolmogorov (1941) relation for the self-similar inviscid inertial range,
u2(y) -~ €2/3)2/3, (2.19)

where ¢ is the local dissipation rate. Consequently, for diffusion interfaces spaced by
distances 1 in the inertial range, the associated strain rate o(A) imposed on these

interfaces should be scaled by
o) - BV 1/3y-2/3 (2.20)
A

We note that the highest strain rates are associated with the smallest scales.

These power laws should hold for scales A smaller than 6, where § is identified here
with the transverse extent of the vorticity-bearing region (8,5 of Brown & Roshko 1974),
but larger than the viscous dissipation (Kolmogorov 1941) scale Ag , given by

Ag = (W37e)VE (2.21)

where € is the kinetic energy dissipation rate (per unit mass) in the shear layer
turbulent region. Accepting ¢ as an integral quantity averaged over the extent § of the

turbulent region, and scaling with the outer flow variables, we can write

(av)3

a L
é

(2.22)

where a is a dimensionless factor. This yields a relationship between Ay and the outer

variables given by

Ak -
= . (a'/3Re) 3" o o7 174 gem 374, (2.23)
where,
U
Re = A\)G (2.24)

is the local Reynolds number for the shear layer. We note here that the dependence of

A /86 on the scaled dissipation rate a 1s weak.
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In the opposite limit of small scales, corresponding to the viscous flow ) £ )
regime, the associated velocity gradients are imposed onto the small scales ) by the
aggregate effect of the larger scales in the flow. In this case,

u(r) =~ A, for x <y,
and therefore,

o(1) =~ constant = g¢, , for A £ XK

where 0, is the expected contraction strain rate in the viscous regime. Consequently, we
see that, in the inertial range, the strain rate increases as A decreases, in accord with
equation 2.20, until a maximum value is reached, corresponding to a scale A, . Below this

scale, the associated expected strain rate can be taken to be a constant.

The assumption of a scale-independent expected strain in tne viscous range was first
proposed by Townsend (1951), who suggested (to quote Batchelor 1959), that "the action of
the whole flow field on small-scale variations of any quantity ... 1is primarily to impose
a uniform persistent straining motion". This idea was used by Batchelor (1959) to derive
the k™1 conserved temperature fluctuation spectrum in a high Prandlt number (Pr = v/x)
fluid.

Gibson (1968) nas argued that the estimate for 0. can be bracketed by the inequality

3o ¢ 273, (2.25a)
% tk

where ty = /y/¢ is the Kolmogorov dissipation time scale, but notes that if fluctuations
in the local dissipation rate ¢ are taken into account these bounds must be increased (see
also Novikov 1961 and discussion in Monin & Yaglom II 1975, end of section 22.3).

Defining

! (2.25b)

% tx

and in view of the bounds in the inequality 2.25a we shall accept an estimate for g of 3.
Gibson's caveat, with respect to the effect of fluctuations in e, will be dealt with
below, as the effect of fluctuations in the local dissipation rate e will be considered

explicitly.

Matching to the A~2/3 behavior of ¢{i) in the inertial range (equation 2.20), we now

have for the expected value of ¢(1), over the complete range of scales,




33

A
2/
o (—) 3. for A > Aq

o(1) = (2.26a)

c for A < Ao,
where Ac is a cut—-off scale where the two regimes match. In other words,

Ao = 83720+ Ao =5.20¢, for B8 -3 . (2.26b)

This yields for the maximum expected contraction strain rate,

82

O

v

\V] v

- > -~ —2 , (2.26¢)
B AZ Ae Ao

and where the numerical estimate is again for £ ~ 3., A sketch of ¢(1),
depicted in figure 18.

Uc.

versus i, |is

log(c’)‘

log A

FIGURE 18. Proposed model contraction strain rate dependence on scale A.

Using these relations for the strain rate ¢(A) associated with the scale A, we can

now, in turn, associate the "time" 1(A) to the scale i, as required by the proposed

approximate solution to the transient diffusion problem. In
equations 2.8 for 1(A) and 2.23 for o()), we have

particular, combining




34

1 -4/
(—x-) 3. for 1 > Ao
g2sc e
7(2) = (2.27)
1 -
(l) 2 , for A < g,
82 Sc e

where S¢ = v/D is the Schmidt number. See figure 19.

log(T)

FIGURE 19. Proposed dimensionless "time" T dependence on scale ).

The implicit picture here is one in which the energy dissipation is more or less
uniform in intermediate sized regions in the flow, of extent smaller that the outer scale
§ of the flow but larger than the molecular diffusion scales. In the spirit of the
earlier similarity hypotheses of Kolmogorov and Oboukhov, we would expect that the
dynamics within these regions would be described in terms of their now local dissipation
rate e, which must be allowed to vary from one region to another, however, as formulated,
for example, in the revised similarity hypotheses put forth by Kolmogorov (1962) and
Oboukhov (1962). In the context of the model, the progress of the unsteady diffusion
process is computed separately for each of these regions, conditional on their local value
of the dissipation rate ¢, and the total mixing is subsequently estimated as an ensemble

average over regions whose dissipation rate can be treated as a random variable.




2.5 The reaction completion scale

The idealizations permitting the association of the unsteady diffusion "time" 1t with
a definite scale i, through equation 2.27, and the "time" 1y at which the homogeneous
mixture temperature 6y(g,) is attained (equation 2.18b), allow us to define, in turn, a
reaction completion scale iy, at which the lean reactant in the cell has been consumed and

the homogeneous temperature has been reached. Substituting in these equations, we find
that the ratio XH/AC is determined, in turn, by the function

F(Ey)
GlEy) = ——— , (2.28)

where F(£®¥ is the flame sheet function of equation 2.16b. In particular, we have

/2
[6eg) P72, for Glgg) > 1

o (2.29)

aley) for G(gy) < 1 .

We note here that the controlling function G(£®) can bhe made large or small, other
things held constant, by manipulating the value of the Schmidt number. Accordingly,
correspcending to the two cases of equation 2.29 dictated by the magnitude of G(£¢), we

will recognize two reacting flow regimes:

1. gas-like, for which the reaction is completed before i, is reached, i.e. Ay > iy
[G{gy) > 1, low Sc fluid ],

and
2. liquid-like, for which the reaction is completed at scales smaller than 1., i.e.

‘g < ae [ G(g¢) < 1, large Sc fluid].

Zombining these results with the expressions for the chemical product associated with
a particular diffusion "time" +t(A), see equations 2.18 and 2.27, we obtain for these two

diffusion-reacztion regimes,
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Gas-like : Xy = ig/he = 03/2(£¢) >

1 , x <1< Xy
6(x)
= 1 s 1 < x < xy (2.30a)
4
& 1< <
' XH X
x2/3
and
Liguid-iike : Xy = ag/rc = Glgg) < 1
1 , x < Xy <1
8(x) G
= -, Xy < x <1 (2.30b)
BH X
6 <1«
) Xy X
x2/3
where
X = (2.30¢)

)
A
c
is the dimensionless interface scale i, normalized by the strain rate cross-over scale
A

2.6 The statistical weight of interface scales. Normalization,

The preceding approximations yield an estimate for the contribution to the total
chemical product in the shear layer associated with each scale A of the reactant
interface, per unit surface area associated with . To compute the total product per
unit volume of shear layer fliuid, however, we need to estimate the statistical weight W(})
for the scale A, in the range di, as the expected surface per unit volume of interface
associated with the scale . Evidently, the resulting statistical weight (associated
expected total surface-to-volume ratio) over the range of scales A must be normalizable to
the unit volume, i.e.

¢
% Wir)dr «~ 1, (2.31)

Recall that, for every differential surface element dS of the E(x,¢) = £g interface, the

assocliated scale ) was defined as the arc length along Vg between the two points on either

2.9 The effect of entrainment ratio fluctuations




side of the interface where Vg has decreased to zero, or, operationally, to some nominally
small fraction Y (say, Y ~ 1073) of its value at £ = Eg. This operation is to be
imagined as performed for every element dS on the interface, with W(l) the resulting

probability density function of i.

It will be convenient %to first consider the interface that would be formed between

the two entrained fluids in the absence of any scalar diffusion, i.e. 1in the limit of
Sc + =, or surface tension. It will also be convenient for the discussion below to

factor Ww(A) into the surface to volume ratio of a scale ) and the probability p()) of

finding that scale X in our Eulerian slice. This yields the relation
\ 1 . - .
WiA)dx - TP Ak = plln(x)" a1ln(h), (2.32)

within a normalization constant.

If we may regard the self-similar inertial range (Ac & A € 6) as not possessing an
intrinsiz characteristic scale, we must accept that the (dimensionless) product W()) dix
can only depend on the scale A itself. Accordingly, again within a normalization

constant, we must have

W(A) dy - % , (2.33)

as the cnly dimensionless, scale-invariant group that can be formed between di and A. It
can be seen that, in this range of scales, p[1n(1)], and therefore also p(A), must be

uniform {independent of i), as perhaps one might have argued a priori.

It {s reasonable to assume that interface scales below the strain rate cross-over
scale A, are primarily generated within regions of extent Ao or smaller. We can imagine a
Taylor expansion of the velocity field about the center of one s.uch sub-l. region and a
(non-inertial) frame of reference that convects with ne velocity field at the point of
expansion, rctating about the local vorticity axis at a rate that cancals the local value
of the (nearly uniform) vorticity in that region. It has been a common assumption to
regard the direction of the principal strain rate axes as also fixed in that frame
{Townsend 1951, Batchelor 1959, Novikov 1961), at least for a time interval of the order
of ty « rv/e)'/2. We shall accept this same approximation here, and also assume that
within each of these sub-}, regions the local normal to the scalar interface has already
been aligned with the principal contraction axis. As mentioned earlier, this latter was
alsc assumed by Batchelor (1959) and recently corroborated for shear flows by the analysis
of Asnhurst et al (1987). We should note, however, that the time that the axes need to

stay fixed in the rotating frame is scaled by the time tpKk to diffuse across Ak, which at

(&)
~3
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high Schmidt numbers can be longer than tK*,

Principat Contraction

Scolar Axis
Interface !

Extension
Axis
\,

*\/Scolor

Interfoce

FIGURE 20. Schematic of scalar interface in the interior of a fluid element of
extent A
c.

Imagine now any two points Py and P, that remain on the principal contraction axis in
this frame and, in view of our assumptions, can be regarded as moving with the fluid. It

can be scen that the number of intersections of the interface and the principal

1 Considering the diffusion geometry in figure 13 for A = Ax and Sc¢ > 1, this time can be
estimated to be of the order of tpk « txk In(v¥Sc) . Batchelor (1959) was aware of this
time scaling, but the issue is ignored in the implicit assumption made about the
contraction axis alignment during the diffusion process. We should also note, however,
that if the diffusion geometry is one of sheets rolled up around vortex filaments, as
assumed by Lundgren (1982,1985), then the vorticity axis is normal to the maximum
contraction axis and the scalar gradient, and the assumption (and the k-1 spectrum)
remains valid. In that case, however, the scalar gradient would be at 45° to the
maximum contraction axis (corroborated for the Kerr 1985 isotropic flow data analysis by
Ashurst et al 1987) and not aligned with it, as appears to be the case in the Rogers et
al (1986) shear flow data (Ashurst et al 1987) and as assumed here.




contraction axis between the points Py and P, will be constant, as the {nterface geometry
{s strained continuously reducing the normal spacings A of the Intersections of the
interface with the principal contraction axis. This conclusion is the same regardless of
whether the interface crosses the principal contraction axis with a 2zig-zag sheet
topology, ¢r as a rolled-up sheet, Or a combination of these iwo possibllities. See
figure 20. Moreover, the subsequent reduction of the normal spacings A of these crossings
aleong the contraction axis will proceed in accord with equation 2.7, which we may accept

as exact for this flow regime and which we shall rewrite as

d
prbLICOICIEE A (2.34)

Imagine now that we are tracking a group of crossing spacings on the 1ln(l) axis as
they evolve, transformed in time by the strain field within the sub=i, region, initially
between the 1limits, say, Ay < ax < a2 < »s, and described by a probability density
function Ppl1ln(Xx)-1n(ry)] = pl1n(A/xy)]. Since they all "move" in Lagrangian time as a
packet with a common (and constant) group velocity along the 1ln(i) axis, we would find
that their probability density function 5[11’1()/“)] will be preserved, even as the
spacings A{t) and () themselves decrease (exponentially) with time, as dictated by

equation 2.34 . See figure 21.
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I3U%T 27. Scale packet evolution in the direction of the =-1n(A) axis under

the action of a uniform and constant contraction strain rate o4,
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We conclude that, in this sense, the straining field in the Sub-A. regions does not
alter the probability density function H{In(i)] of the larger scales that cascade to

these regions from the inertial range.

These arguments suggest that p[1n(i)], and therefore also p{i), must be constant not
o 'y within the inertial range but also in the viscous range and therefore throughout the
spectrum of the interface scales. Consequently, for a self-similar surface, equation 2,33
may be accepted as a uniformly valid description of the expected surface to volume ratio

of the interface as a function of A, in the limit of S¢c + =,

To investigate the effect of a finite Schmidt number on the associated expected
surface to volume ratio of a scale A, we first consider the following model problem.
Imagine that we are sliding the center of a ball of diameter dp on the Sc + = interface
and we wish to estimate the volume swept by this ball, per unit volume of flow, as its
center scans the whole surface. It can be seen that for portions of the curve for which
the Jocal scale ) is large compared with the ball radius, the volume swept will be well
approximatec by the product of the ball diameter and the associated interface surface to
volume ratio. Consequently, the volume swep- by the ball as the interface scale
decreases, per unit volume of fluid, will continue to i{ncrease in accord with equation
2.33, until we reach the scale A - dy, pelow which the contributions per unit interface
surface area can be no larger that those at the scale i - dp . This picture suggests an
estimate for the statistical weight of a scale A, at finite values of the Schmidt number,

given by
di
T v for i < ip
D

1
L@ DI P Y . — (2.35)
N(Sc,Re) 3

da
T ’ for » > ip ,

where An is an appropriate diffusion scale and N(Sc,Re) is the normalization function, as
required by equation 2.31. In particular, integrating over the range of scales, we have

AD §

N-{J *J fwn)ax,
0 AD
or
6 Ae 6
N=1+n(=) a1ein(—)+1n({=). (2.36)
AD AD Ac

To proceed further, we need an estimate for Aip/is, the ratio of the appropriate
diffusion scale to the strain rate cut~-off scale Ao .




For high Schmidt number fluids (Sc > 1), we will base our estimate on the Batchelor

(1959} scale. In particular,

g 172
Ap = L A
p = 8(5) K »

where Ay is the Kolmogorov scale, 8 - 3 (recall equation 2.25 and related discussion), and
CB is a dimensionless constant of order unity. To assign a numerical value to Cg, we use
the Batchelor (1959) estimates for the scalar space correlation function

Deelr) = <&(x) g(x+r) x

which he expresses in terms of a double integral over r' < r. He finds that for
distances r small compared with the diffusion scale, DEE(r) ~ ¢/6 asymptotically, whereas
for distances large compared to the diffusion scale, but small compared with the

Kolmogorov scale, DEE(r) - 1n(g) , where

Monin & Yaglom IT (1975, section 22.4) express these results in terms of a differential

equation for DEF,(’")' given by
bzh"(g) + (6+z)h'(g) = 1, h(0) =0,

where h = h(g) 1is the scaled (dimensionless) DEE(r), and which can be estimated by
numerical integration of the differential equation. The reculting solution transitions
from the linear behavior to the logarithmic behavior rather smoothly over the interval
1 <7 ¢ 4. Accepting the mid-point o =~ 2.5 of this interval as the cross over between
the linear (diffusive) behavior and the logarithmic (convective) behavior, we obtain the
estimate Cg = /7, = 1.6. Finally, expressing the diffusion scale Ap in terms of the

strain rate cross-over scale i,, as required by the normalization function, we have

AD Cs
s e—, for Sc > 1 .
AC g Sc1/2

For Sc < 1, Batchelor, Howells & Townsend (1959) find that Ap /ag ~ Sc'3/u . As we
are not interested in Schmidt numbers that are much smaller than unity, and requiring

continuity at Sc = 1, we will accept the estimate
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’ for Sc¢ > 1,

B Sc”2
Ap
XD = T - (2-37)
c
CB
. for Sc <1,
g Se3/H

with Cg ~ 1.6, Substituting for & and ip in equation 2.36, we then obtain the expression
for the normalization function,

q 1/3
N(Sc,Re) = 1 + ln(-e-si] + %1n[LJ£) , (2.38)

where q = 1/2 for Sc > 1, 3/4 for Sc {1, Cg~1.6, B ~3 and a is the dimensionless
ratio of the dissipation rate e and (AU)3/6 (recall equation 2.22 and related discussion).

These considerations suggest that the problem is characterized by four length scales,

namely:
3/4
§ = (a'/3Re/82)”" A, : 1large scale of the flow,
My : reaction completion scale (equation 2.29)
A, : strain cross-over scale,
and,
Ap : the species diffusion scale (equation 2.37)

All four scales have been referenced to i,, the strain cross-over scale, related, in turn,
to the Kolmogorov scale through the constant B (see equation 2.26b). These scales define
the arena in which the species diffusion and chemical reaction proceeds, bounded by § as
the large scale limit, on the one hand, and Ap as the smallest scale at which it makes

sense to attempt to track the species diffusion and chemical reaction interface.

The preceding arguments also lend credence to the conjecture that the preponderant
fraction of molecularly mixed fluid, and hence chemical product, resides on interfaces
associated with the smallest scales. This is owing to the fact that not only is the
statistical weight of the smaller scales larger (equation 2.35) but also that the chemical
product (molecularly mixed fluid) per unit surface area increases monotonically as the
scale A decreases (equation 2.30). The combination of these two effects renders the
overall description of the mixed fluid and chemical product fortuitously forgiving to the

treatment of the large scales in the flow.




2.7 The effect of dissipation rate fluctuations

The results thus far have been obtained conditional on a fixed value of the
dissipation rate ¢ (corresponding to the particular station x). In particular, scaling
with the outer variables of the flow we wrote for the dissipation rate per unit mass

(equation 2.33),

where a is a dimensionless factor. As Landau noted soon after Kolmogorov and Oboukhov
formulated their initial similarity hypotheses, however, the local dissipation rate ¢ (and
therefore a) cannot be treated as a constant in the turbulent region, but must be regarded
as a strongly intermittent field. This objection was addressed in the revised similarity
hypotheses of Kolmogorov (1962), Oboukhov (1962°, and Gurvich & Yaglom (1967), which will
be adopted here as yielding an adequate description for the purposes of assessing the

effects of the dissipation rate fluctuations.

We can cast the revised similarity hypothesis in our notation by normalizing the
fluctuating dimensionless factor a with its mean value a, i.e. a' =a/a, such that
@' = 1. This yields a log-normal distribution for the values of the (scaled) dissipation

rate o', averaged over a region of extent r In particular,

€

1

pla')da' = —  op |- s(2rll [ IyEy g, (2.39a)
VZmra' ¢ 1 2

where ¢ = Zz(r‘c), is the variance of the distribution, in this model given by

2(r) = A+uin(2) . (2.390)
€

The term A in this expression may depend on the large scales of the flow and u is taken as

a constant.

Monin & Yaglom II (1975, section 25) reviewed this hypothesis, and found that it
represents a good approximation to measurements of the local dissipation rate.
Additionally, they concluded on the basis of comparisons with data that the constant u
should be taken 1in the range of 0.2 < |, ¢ 0.5, More recently, Van Atta & Antonia (1980)
considered the consequences of this proposal on the dependence of velocity derivative
moments on Reynolds number and concluded, if r. is taken all the way to the Kolmogorov
scale Ay that yu should be taken as u ~ 0.25. Ashurst et al (1987) have also estimated
the value of y on the basis of direct turbulence simulation computation data (Kerr 1985,
Rogers et al 1986) and concluded that u = 0.3 . Considering all the evidence, tnis latter

value will be accepted as representative and as our estimate for u.
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Estimates for &, corresponding to the mean value of the dissipation €, are difficult
to obtain for turbulent shear layers. There is enough information, however, in the data
of Wygnaski & Fiedler (1970) to permit an estimate of @ 2 0,02 . An estimate can be made
from the data of Spencer & Jones (1971), which also leads to the same value. It is
difficult to assess the probable error of these estimates, not to speak of the possibility
intimated by Saffman (1968) that & may not necessarily be a constant, i.e. independent of
the Reynolds number. Nevertheless, considering the nature of the experimental
difficulties, the assumptions made about isotropy, and in view of the realizable spatial
and temporal resolution relative to Ay and Ag / Us, respectively, where U, is the local
flow convection veloecity, we can say that this estimate is probably low, even though
perhaps not by more than a factor of 2 to 3. Conseqguently, one would argue for a

plausible range of values for a of

0.02 ¢ @ < 0.06. (2.40)

In applying these results to the present discussion, we will take r_ down to a
(ri1xed) viscous scale Xy that is a function of the (local) Reynolds number and equal to
the strain rate field cut-off scale ), corresponding to the mean value of the dissipation,

i.e. (see equation 2.31)

-1/3
- ("__R—e)yu. (2.41)

S

This yields an expression for the variance of a given by

=1/3

I2(Re) =~ A+ 3_u“ ln(“___ﬁf) . (2.42)
2
8

Finally, an estimate can be made for the constant A with the aid of the following
argument. As the local Reynolds number is increased from very small values, the flow is

initially essentially steady with no fluctuations in the dissipation rate field. At some
minimum value of the Reynolds number, however, the flow will evolve into a fluctuating
field with a spatial scale of the order of § and an associated variance in the local
dissipation rate fluctuations. At that critical value of the Reynolds number we must have
XQZ(Rec,.) - 0. This fixes the flow-specific constant A, and also removes the unpleasant
dependence of the variance on the particular choice of the reference scale iy, and we

have

) . (2.43)




While we recognize that, strictly speaking, a free shear layer does not possess a critical
Reynolds number, one can conclude from the linear stability analysis for viscous (but
parallel) flow of a hyperbolic tangent profile (Betchov & Szzewczyk 1963) that an unstable
mode with a spatial extent of order é§ requires a minimum Reynolds number of the order of
15 € Re < 50, which we will accept as bounds for Rege . Note that Re here is based on §,
the total width of the sheared region, and not on the (smaller) hyperbolic tangent maximum
slope thickness. See also discussion by Betchov (1977). It is interesting that this
estimate for a critical Reynolds number is not too different from the one made by Saffman
(1968), who explored the idea that the structure of the flow in the dissipation range was

essentially that resulting from the Taylor-GSrtler instability of curved vortex sheets.

To compute the probability density function of the ratio Aa/Ap , we note that since

Ao = dgan)VH, .-.4la)
we must have
1 1 2
P(y)dy = — exp{-=(y - za/2) }ay, (2.4up)
/2n 2
where
4 Ac
y = —in{—]) . {2.4uc)

This is correct to within a (near unity) normalization constant, as we wish to restrict Ao

to the range 0 g Ac S 6.

To compute the effect of the dissipation fluctuations on the expected value of the
scales normalization function N(Sc,Re) discussed in the preceding section, we also note
that if we assume that the ratio A,/\p ‘s independent of the dissipation rate e (a

function of Sc only), we have

Ao 5 Ao
<N(Sc,Re)>. = 1 +in(=—) +1n(—=)-<in{—)> .
Ap A9 Ao
Then since
Ae Lo
<in(=)>, = T <y,

¥s
J f(y) p(y) dy
o 4 5
Cfly) > = ; ys = _ln[A—
(Ve la 0
J p(y) dy

) {2.46)
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and since, in particular (at high Reynolds numbers)

T4 eXP{'E(Yﬁ'za/z) } La
Cy> = _— - . =, (2.47)
2 1 Vg~ I72 2
Zr [1- <erfe )]
V2
we have (see equations 2.38 and 2.43)
=1/3
q R R
<N(Sc,Re) >, w1 (83 . 3 (=) - (=], (2.48)
Cp y g2 8 Re,p

It is useful to rewrite this expression by defining a constant T through the relation

51/3

g2

Rear (2.49a)

and where we note, at least on the basis of our numerical estimates for these quantities,

that T - 1. 1In terms of T, we then have

Jo+1n(m) ] . (2.49D)

q
CN(se,Re) >e w1 v an (B2 ) 4 3 (0= )|

Cq U Re

cr
Returning to the derivation c¢® the quantity in the brackets and recognizing the role it
plays in the normalization of the range of turbulent scales, however, we can argue that it
should vanish as Re + Re,. and that, therefore, we must have T = 1. This provides us
with a consistency estimate and plausible bounds for Recr (see equation 2.49a and
inequality 2.40) given by

2
23 ¢ Regr = :37/—3 < 33 (2.49¢)
a

(recall g2 - 9). This we can use to rewrite the expression for the ratio G/AO (equation
2.41), 1.e.

Lo (R P (2.494)

AO Recr

Finally, for high Reynolds numbers, we may certainly ignore the 1n(l') term in favor of

1n (Re / Re..) and we have,

Sef R
BSe’ )L 32y,

<N(Sc,Re)> &« 1 + 1n(
€
Cp y 8 Recr

(2.50)

where g ~ 3, g =1/2 for Sc > 1, and 3/4 for Sc €1, Cg~1.6, u ~ 0.3 and Regpr is




bounded by the limits in equation 2.49c. It may be worth noting that the resulting
estimate for the normalization function is quite robust, as the various uncertainties in

the constants appear as arguments of logarithms.

we conclude that the effects of the dissipation fluctuations on the expected value of
tne normalization function are small, being confined to the contribution to the final

result owing to a non-zero value for p.

2.8 The total product in the mixing layer

Tne total chemical product can now be computed as the weighted average of the

contricution of each scale, i.e.

) Xg
op - [ sGAQUMI @ = j 8(x) w(x) dx , (2.51)
0 0

where X = A/d.  xs = 6/hc, 8(x) is given by equations 2.30, and

dx
x for x < xp

: D

w(x)dx = (2.52)
<N>e

dx
., for Xp < X
b

(see equation 2.36), with xp = Ap/A, (see eguation 2.37). We will first perform the
computations conditional on a fixed value of the dissipation rate, and therefore Ao, and

then compute the total as the expectation value over the distribution of values of Ao .

For gas-lixke flow-diffusion regimes (see equation 2.30 and related discussion), we
have the relation

AH
/
XH = T = GB 2 > 1

c

where G = G(f, rp Sc) is given by equation 2.28, and we need to distinguish between two
cases depending on the relative values of Xy and xy. The first case corresponds to

Xs < xy, for which

or,
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8
N>, T .

3, - 3 -3/2
¢ 5 2 - In0xp) ¢ 3 1n(s) - 3 Gx, 372, (2.53a)

In the seconcd case, we have Xy < xp and therefore

er 1 %y ¢ (o _ Xs _
<N>€_ = —-J dx*—J x2/3dx*GJ x~37/3 dx
O Xp % XD xy Xp
or
o1 1
N>, — o — (gch”3 -262/3) - §Gx6'3/2 . (2.53p)
Oy Xp 2 2

Of these two cases, the first [ xp < xy] would typically be applicable for Sc < 1, if
8 ~ 3 and we have reasonable values for the stoichiometric mixture ratio ¢ and entrainment

ratio E.

For liquid-like flow-diffusion regimes we have the relation

=G <1,

AR
XH = —
¢

and, in principle, we need to distinguish between three cases. The first liquid-like case

corresponds to the inequalities Xp < x4 < 1 and the integrals

eT XD Xy v Xg
N>, . ’_J dx+I x'1dx¢GJx2dx+GJ x~573 dx
(&} X
H D 0 XD XH 1
which yields

o1

<ND> —
E
Oy

= 2 - 1n{xp) *+ g + 1n(G) - %Gx6“3/2 . (2.54a)

For the second liquid-like case, we have Xy < xp < 1, and

er 1 *H ¢ (*p . - Xs
N> — . —J dx*—J x1dx¢GJx2dx‘GJ x5/3dx ,

Oy XD *p XH XD 1
or
S1 10 3 .. -3/2
N> — = g[ =+ _(2~1n(xD)-1n<o))]-—cx6 . (2.54Db)
3] 2 X 2
H D
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Finally, we may also have Xy < 1 < xp, in which case

1 X
o 1 (*H - D x
<ND ) s — J dx + S ( J x"1ax + J x2/3dx ] + G J 8 %-5/3 ax .
% Xp ‘o D xy 1 1
wnizh yields
6 9.3 3 0, -3/2
N> — = = (= x5 -2 -1n(6) ) - ZGx47372 . (2.54¢)
oy xp 2 2

Of the three cases for the liquid-like regime, the first one [xp < xyg < 1] would

typically be applicable for Sc » 1.

If treating the variable 8 of equation 2.25 as a constant represents an adequate
approximation, it can be seen that only the last term in each of these expressions will be
modified by the fluctuations in the dissipation rate. With that proviso, since
x5'2/3 =- (AC/5)2/3. the contribution of the last term is small at large Reynolds numbers.
In any event, expressing Ao/8 1in terms of the corresponding distribution variable vy

(equation 2.44), we find for Re » Re,p

Re - (1 -Tusu8)/2

Recr

<x6-2/3>s - | (2.55)

Substituting in the results for the two typical cases (equations 2.53a and 2.54a),
for example, we obtain for the expected value of the gas-like (G > 1), product volume

fraction in the layer,

5 -
3 - In(xp) + %m(c) - gc<x5 2/35,
<Opy. o | | oy (2.56)
& 3 u Re H
1 = 1In(xp) + =(1 - =
D ) 1n ( .
4 8 €er
and for the typical {Sc » 1) liquid-like (G < 1) product fraction
G -
2 - 1ln(xp) * 5 In(G) - % G <xg 2/3>C
<Or>. = | 3 - — } ey s (2.57)
1 - 1n(xp) + =(1==)1n( )
4 8 Recr

2/3

where x5 is given by ecuation 2.37 and <x5_ ¢ by equation 2.55.




2.9 The effect of entrainment ratio fluctuations

we should note, at this point, that in the discussions thus far we have treated the
entrainment ratic E, and the resulting homogeneous mixture fraction £¢ (equation 1.8), as
single-valued. e should recognize, however, that £p is a varjable that we would expect
to be distributed according to some probability density function p(Eg). This can then be
usel tc cttain the estimate for the expected product thickness, as would be measured in
the ladoratory, by weighting 8y (5®, £g) , for each value of £p, with p(Eg) . An estimate
for plgz) can be obtained with the aid of a refined model for the entrainment ratic E of

the layer, which is outlined below.

2 T T T
fou
DR -
[o%
(o}
[o] a

Probability density function p(%/%) for normalized large scale
structure spacings. Dashed curve for Iy = 0.28. Sclid curve for

Iy =0.56.

€G.aliorn 1.7 car be used to estimate the entrainment ratio, then, even though the

2ar, entreinrent ratic woulild be given by

k2 /2 -

.
e
~
>
~
wn
™

we must allow for & cdistribution of possible values of E about E, since, experimentally.




E(EF) = . (2.62b)
E T-Eg
30 I T ]
20 — —
b
T
10 = —
o | |
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c:

JRE 23. Probatility density function for entrainment ratio mixture fraction

&g = E/(E+1). Dashed curve for Iy = 0.28. Solid curve for
Ly = 0.56.
% .

The dashed line in figure 23 is the resulting probability density function p(gg),
corresponding to equal free stream densities, a velocity ratio of U2/u1 = 0.38 and the
Sernal value of I; = 0.28. Note that, in spite of the w.1th in the &/1 distridution,
the values of Ep are relatively narrowly distributed about the value of £f = 0.567,
corresponding to a mean entrainment ratio of E = 1.305, given by equation 2.36 for

Pz/g+ =1 and Up/Uy = 0.38.

It shoulZ be noted that the experimental determination by Bernal (1981) of the
nistogram of values of £/1 invelved the identification of the intersection of the
"zrai:ds” of each structure with the line corresponding to the trajectory of their centers.
Zcnseguently, sStructures in the process of tearing or coalescence, or at any other p.ase
cr configuration during whizh they could not be easily identiiried, were not included in

mplie potpulation. In other words, the distribution of spacings contributing to
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D
1
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o
-
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perimertal histogram and the resulting fit of the log-normal distribution width




one finds that the large structure spacing to position ratio 2/x is rather broadly
distributed about its mean value L/x. In particular, Bernal (1981) has presented data and
tneoretical arguments in support of a log-normal distribution, which we can write,

following the notation in section 2.7, as

1 1 IR Ip 2, 42’
Pg(2')dy' = —— exp{--(-’m(—) * 5 I—F . (2.59a)
V2T g, 2 Zy
where
L' - /L. (2.59b)

This is plotted in figure 22, where the dashed line is computed from equatien 2.59, using

the value -~ecommended by Bernal of I; = 0,28, See Roshko (1976, figure 5 and related

discussion) as well as Bernal (1981, figure I1.8) for a comparison with experimental data.

Equations 1.7 and 2.58 can Dbe combined to yield an estimate for the expected
distributior. of the values of the entrainment ratio E. The picture to be borne in mind
is one in which the entrainment ratio E corresponding to a particular large structure can
be treated as more or less fixed, but that the value of E varies from structure to
structure in accordance with the range of values of 1/x (as well as the history of &L/x of
the structures that have amalgamated to form the ones passing through the station x). .°
particular, since
('iZ_ 172
Py

(v« Ty ], (2.60)

)

we have, for equal free stream densities,

dE E-1
PE(E)dE = pg[L'(E)] — , where L'(E) = ,
2/x T/x
and therefore
1 11 E-1 Iy 2, dE
PE(E) dE = exp{-—[-— 1in { — )+ _] 'E——_‘I . (2.61)
/37 1y 2 Iy T/x e

Using similar arguments, one also nbtains the distribution p(g£g) of the corresponding

values of the mixture fraction §¢ ir. terms of pg(E), in particular

dEE
P(Eg) ot = pplE(gg)] —— (2.62a)
(1 - EE)Z

where, inverting equation 1.8, we have




I; was based on structures that were more or less clear of their neighbors and of
interactions with them. Evidently, a full accounting of the possible large structure

spacings will contribute values of %/x, which if included in the population, would tend to
proaden its width. Moreover, the expression for the entrainment ratio as given by
eguation 2.60 and as discussed elsewhere (Dimotakis 1986) refers to the entrainment flux
ratio into a single large scale structure. The composition ratio of a given large scale
structure, however, is the one resulling from the amalgamation of several structures, each
of which was characterized by an entrainment ratio as dictated by its local #&/x and its
fiuctuations. While this consideration does not shift the mean value of E, it can be seen
that it increases the variance of E, relative to its value referenced to the fluctuations
of the local i/x. Accordingly, in estimating the distribution of values of the
entrainment ratio E, and the resulting homogeneous composition values &g, one should
accept a broader distribution of values of E, which we will approximate by accepting a

larger value of I, ,

The curves depicted with the solid lines in figures 22 and 23 were computed by
doubling the Bernal value of the log-normal distribution width, i.e. Iy =0.56, as
representing a reasonable estimate for that quantity in view of the preceding discussion,
and are plotted for comparison. It can be seen, however, that even this factor of two
increase in the width I; does not significantly alter the resulting probability density

function width for the distribution of values of gp,

Using the computed probability density function for the values of §g, the problem is
finally closed and we can now estimate the expected product thickness 6p/§ in the mixing

layer, l.e.

8p 1

— - <ordeE - jo<er<eg> >. plEg) dég (2.63)

where <Orfrpy > is the expected value of the normalized chemical product, averaged over
the dissipation rate fluctuations, conditional on the fixed value of £g, as discussed in

the rreceding section.

Tne cependence of tne resulting estimates for &p/§ on the possible range of values of
the varlance Iy of ¢ /% is small and confined to values of the stoichiometric mixtus .
fraction £, in the vicinity of £g - It will be discussed below in the context of the
comparison of the theoretical values with the data.
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3.0 RESULTS & DISCUSSION

Using the preceding formalism, one can estimate the expected volume (or mass)
fraction of chemical product and molecularly mixed fluid generated within the

twe-dimensional turbulent shear layer wedge boundaries.

We recall here that the proposed model applies to incompressible flow, i.e. in the
limit of zero Mach number. In the case of gas phase reactions, the heat release is
assumed small and, in the case where the (small) temperature rise is used to label the
chemical preoduct, the heat capacities of the two free stream fluids are assumed matched.
Differential diffusion effects have been ignored, i.e. all scalar species are assumed to
diffuse with the same diffusivity. Also the chemical kinetics have been assumed fast.
Finally, the Reynolds number has been assumed high enough for the shear layer to be in a

fully developed three~dimensional turbulent state, i.e. Re > 1.6x10% - 2x10% .

In evaluating the theoretical estimates, the following values will be used for the

dimensionless parameters:

1. The expected value of the entrainment ratio E will be computed using equation
2.58 .

2. The fluctuations of E/E will be estimated using equation 2.61 with a variance

twice the Bernal value, l.e. Iy = 0.56, as discussed in section 2.9.

3. The value of the expected maximum contraction rate o,, at or below the
Kelmogorov scale, will be estimated using the expression o,tyg = 1/8 with 8 ~ 3

{see equation 2.25 and related discussion).

J =4

- Resn | the critical Reynolds number, will be estimated via equation 2.49c, using
the mid-point of the expected dimensionless dissipation @ bounds (i.e.

3 = 0.04). This leads to the value of Regp = 26.

wn

The Kolmogorov/Oboukhov coefficient y in the variance of 1n(e) will be taken as

0.3 (equation 2.,43).

(o)

The ratio x; of the diffusion scale ip to the strain rate cut-off scale Ao will
be computed using equation 2.37, with a value of Cg - 1.6, as discussed in

section 2.6 .
and, finally,

7. Tne product volume fraction 6p/s will be computed using equation 2.63, with

<97(gc) >. given by equations 2.56 or 2.57 (or 2.53, 2.54), as appropriate.
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We note that the results are only weakly sensitive to these choices, appearing in the

final expressions, by and large, as arguments of logarithms.

3.1 Comparison with chemically reacting flow data

The proposed model predictions for the chemical product volume fraction
8p1/8 = E¢6p/6, versus the stoichiometric mixture ratio ¢, for the hydrogen-fluorine gas
phase data (Mungal & Dimotakis 1984), for which Sc = 0.8, U,/Uy « 0.40, pp/py =~ 1, and
Re =« 6.6-10“. are plotted in figure 24, The predicted values are in good agreement with
the gas phase chemical product volume fraction data. The essentially correct prediction

of the absolute amount of product may perhaps be regarded as fortuitous but is
nevertheless noteworthy.

5p1(‘)/6
o
V]
]
|

FIGURE 24. Model predictions for &py(¢)/8 product thickness. Data legend as in
figure 4.

R plot of the 8p/g predicted chemical product volume fraction, versus §,, appears in
figure 25. Thne top solid curve and data points (circles) are transformed from figure 24.

The corresponding predictions are also plotted for the liquid data (Sc = 600) of
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Koochesfahani & Dimotakis (1986).

© - ~
N - - T~~a
-~ - ———— ~——-
* 0.2 = - - il ——— <]
Ry - - ~— e -
~ - - T ——
- P — -
© \\ ————— —" —.”.”
——
T
0.1 = —
- ! | | !
0.0 0.2 0.4 ©.6 0.8 1.0
te

FIGURE 25. Proposed model predictions for 8p/8 vs. E, data. Solid line for
gas phase data {circles; Sc = 0.8, Re = 6.2:10 , Mungal & Dimotakis
1984). Dashed 1line for liquid phase (Sc = 600, Koochesfahani &
Dimotakis 1986) data (inverted triangles; Re ~ 2.3x104).
Dot-dashed line for higher Reynolds number point (upright triangle;
Re = 7.8x104).

As can be seen, the Schmidt number dependence of the chemical product volume fraction, at
comparable Reynolds numbers, appears also to be predicted essentially correctly. The
prediction for the lower Reynolds number -data Is a 1little high. As mentioned earlier,

however, it may be that the Reynolds number for those data may not be high enough.

Figure 26 depicts the model predictions (solid line, Sc = 0.8) for the dependence of
the product thickness 6p/s on Reynolds number, as compared to the gas phase data of Mungal
et al (1985) and the 1liquid phase (dashed line, Sc = 600) data of Koochesfahani &
Dimotakis (1986). As can be seen, the experimentally observed drop in the chemical
product volume fraction of approximately 6% per factor of two in Reynolds number in the
gas phase data, appears correctly accounted for by the proposed model. We note again that
the lower Reynolds number liquid phase data point of Koochesfahani & Dimotakis may be too
close to the mixing transition Reynolds number regimeé to be considered representative of

the asymptotic behavior at large Reynolds numbers.
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TIGURE 26. Model predictions for &p/§ chemical product volume fraction
dependence on Reynolds number. Data as in figure 6. Solid line for

gas phase data. Dashed line for liquid phase data. Data legend as
in figure 6.

In figure 27, we investigate the sensitivity of the predictions on the value of the
log-normal distribution width I, , The top cusped curve is computed for a single-valued
entrainment ratio of E = E, where E is given by equation 2.58, i.e. a Dirac delta
function probability density function p(gg) = §[gg-E/(E+1)], corresponding to a value
for the variance of Iy =0. The curve below the cusped curve corresponds to the Bernal
value of I, =0.28. Finally, the bottom line corresponds to the value accepted here as
representative of the entrainment ratio fluctuations as reflected in the composition
“lithin a single structure, 1i.e. double the Bernal value, or 22 =0.56, and the
orovability density functions plotted as dashed lines in figures 22 and 23. As could have
been anticipated, the effect of incorporating the expected distribution of values of the
2ntrajinment ratio is very slight and confined to the neighborhood of £y - £ = E/(E+1),
Z0rresponding to the mean entrainment ratio E, and resulting in the removal of the cusp in

“he oroduct thickness at Eﬁ = €F.
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FIGURE 27. Model sensitivity to value of variance Ip used in entrainment
mixture fraction PDF. Corresponding predictions for Sp(eg)/s
cnemical product volume fraction. Top (cusped) curve for Iy = 0.
Middle dashed curve for I, = 0.28. Bottom (solid) curve for
Ly = 0.56 used in the model.

As discussed earlier, the sensitivity of the computed values of the product volume
fraction to the various choices of the flow constants is weak. By way of example, the
smooth curves in figures 4 and 5, which do not differ substantially from those in figures
24 and 25, were computed using a value of B8 = 5T, leaving all other constants at their

nominal values.

Finally, we note that the model predictions for the chemical product volume fraction
tend to be a little high (see figure 25 and 26). One could argue, considering what is
deing attempted here with a rather simple model and no adjustable parameters, that the
agreement with experiment is more than satisfactory. We also note, however, that two
assumptions that were made in the analysis may not be adequately justified in the case of
the hydrogen-fluorine gas phase shear layer data. One, as Broadwell & Mungal (1986) have
suggested, the kinetics may not be sufficiently fast. If this is indeed the case, the
chemical product would be lower than would be observed in the case of infinite kineties.

T#0, we recognize that the assumption of equal diffusivities for all the reactant species

L ) C . C . -
-uch a value is, of course, inadmissible by virtue of the bounds in ineguality 2.25
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is also not justified, hydrogen possessing a diffusivity roughly four times higher than
the other reactants/diluents in those experiments. It is difficult to give an a prior{
assessment of the effects of unequal diffusivities, possibly as coupled with the effects

of finite kinetics, at this time.

3.2 The mixed fluid fraction

An important quantity in turbulent mixing is the mixed fluid fraction within the

turbulent zcne. It is to the mixing scalar (or scalar dissipation) field what
intermittency is to the turbulent velocity (or energy dissipation) field. Operationally,
it can be defined through the probability density function (PDF) of the conserved scalar,
i.e. p(g), integrated across the shear layer width. In particular the quantity

8p(Sc,Re) 1-€4
—_— . J' p(E,Sc,Re) dg , (3.1)
8 3

for some small value of & which excludes the unmixed fluid contributions from the
neighborhood of g ~ 0 and £ ~ 1, represents the volume fraction occupied by molecularly
mixed fluid within the transverse extent of the turbulent shear layer. This quantity can
be expected to be a function of the fluid Schmidt number and the flow Reynolds number (and
potentially also of the free stream density ratio and velocity ratio}. In particular, we
would expect that an increase in the Schmidt number, at fixed Reynolds number, should
result in a decrease of 8,/5, which should vanish in the limit of infinite Schmidt
numbers. An a priori assessment of the behavior of the mixed fluid fraction at fixed
Schmidt number in the limit of very large Reynolds numbers cannot be made as readily and

will be discussed separately below.

While the integral indicated in equation 3.1 can, in principle, be estimated by
direct measurement of the scalar field &£(X t), and therefore also its PDF p(g), it was
pointed out by Breidenthal (1981) and Koochesfahani & Dimotakis (1986) that, as a
consequence of the inevitable experimental finite resolution difficulties at high Reynolds
numders, such measurements will generally overestimate this quantity. It was also pointed
out in Koochesfahani & Dimotakis, however, that reliable estimates are possible using the
results of chemically reacting experiments, namely the chemical product fractions §p(g,)/$
and §5(1-g,)/¢ from a "flip" experiment conducted at ¢, and 1/¢,, for small values of ¢, ,
corresponding tc a £, = ¢5/ (1+¢5) « 1. In particular, the mixed fluid fraction can be

estimated in terms of the chemically reacting flow results by means of the relation

Sm 1-%0

5 - < [ 5p(Eo) + 6p(1-60) ] - (3.2)

This is very close to the expression in equation 3.1 and equivalent to computing the
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integral of the product of the probability density function with a "mixed fluid" function
8m(£) given by,

= , for 0 £ £ < &
£o
Op(g) = 1 » for g < £ < 1=y, (3.3a)
1-¢
' for 1-go < E <1
Eo
(see figure 28), i.e.
6m r1
I J 8m(E) p(g) dg . (3.3p0)
§ 0

6 (€)

Eo l 'eol E

FIGURE 28. "Mixed fluid” normalized function 8n(E). See equation 3.3.

We note that if the curvature in p(§) in the edge regions 0 < § < £, and 1-(5 < £ < 1 can

be ignored, this expression reproduces the result of equation 3.1 for &y « go/2.

Gas phase (Sc -~ 0.8) nflip" experiments (¢, = 1/8) are available from Mungal &
Dimotakis (1984) at a Reynolds number of 6.6 x 104 (see figure 25). The 1liquid phase
(Sc ~ 600) "flip" experiments (¢, = 1/10) of Koochesfahani & Dimotakis (1986) were at a
lower Reynolds number (Re - 2.3x10%). The value of §p/6 for their higher Reynolds
number data at ¢ = 10, however, is so close to their corresponding lower Reynolds number
value (see figure 26) that the Reynolds number dependence of the liquid data can probably
be ignored as a first approximation in comparing the gas phase and liquid phase results to

assess the Schmidt number dependence of Sm/8 .
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FIGURE 29. Proposed model predictions for mixed fluid volume fraction 6,/8 as a

function of Schmidt number and Reynolds number. Circle derived from
Mungal & Dimotakis (1984) data. Triangle from Koochesfahani &
Dimotakis (1986) data (see text). Solid curve for Re = 6.6x10%.
Dashed curves, in ~rder of decreasing mixed fluid volume fraction,
for Re = 104, 105 .4 106.

A plot of the model estimate for the mixed fluid volume fraction §m(Sc,Re)/8, using
a value for o, of 1/8 corresponding to the gas phase data, is depicted in figure 29 as a
function of Schmidt number. For the purposes of illustration of the qualitative behavior,
the plot ranges from a value of the Schmidt number of 0.01, as would be appropriate in
estimating the fluid at an intermediate temperature in a two-temperature free stream shear
layer in mercury, for example, to a Schmidt number of 106 , as would be appropriate for
mixing of a particulate cloud that diffuses via Brownian motion. The solid line in that
figure is for Re = 6.6« 104 corresponding to the gas phase data. The circle represents
the gas phase experimental value while the triangle represents the liquid phase data. The
other dashed lines are for Re = 'IO“, 105 and 106 , respectively, in order of decreasing
values of 6,/5 . The corresponding estimates using the Broadwell-Breidenthal model, with
the values of the coefficients ¢y and cf in that model derived by fitting the gas/liquid
difference (at low ¢) of these data (equation 1.13), are plotted in figure 30 for

corparison.
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FIGURE 30. Broadwell-Breidenthal model predictions for mixed fluid volunme

fraction 6,/6 as a function of Schmidt number and Reynolds number.
Note Reynolds number dependence at fixed Schmidt number and
asymptotic 4w nendence for large Schmidt numbers. Data legend as in
figure 28.

3.3 Discussion and conclusions

Several features of the predictions of the proposed theory for the expected mixed
fluid or chemical product volume fraction, within the transverse extent of the shear

layer, perhaps merit discussion.

The absolute amount of molecular mixing appears to be estimated essentially
correctly, as a function of the Schmidt number and Reynolds number of the flow, with no
adjustable parameters. In this context, recall that the various experimental values for
the parameters used in the theory pertain to the statistics of the turbulent velocity (and
dissipation) fields, which are assumed given, In particular, they are not derived from
the results of mixing or chemically reacting experiments, which the theory attempts to
describe. Moreover, the theory |is relatively robust in that variations within the
admissible range of these parameters do not have a significant effect on the predictions.

The usually difficult gquestion of an a priori estimate of intermittency, or, in the




present contex:, of the volume fraction in the flow occupied by unmixed (unreacted) fluid,
is addressed through the normalization of the volume-filling spectrum of scales. Finally,
except for switching (matched) analytical expressions, depending on the relative
magnitudes of the various (inner) scales of the problem, i.e. Ap, Ag, Ag, liquids and
gases are treated in a unified way throush the explicit dependence of the results on

Schmidt number.

The theory also predicts that, at sufficiently high Reynolds numbers, the amount of
mixed fluid or chemical product in a gas phase shear layer would be less than what would
be observed in a liquid layer at sufficiently low Reynolds numbers (recall figure 29). In
fact, the interesting and controversial prediction 1is that the volume fraction of the
mixed fluid tends to zero with increasing Reynolds number, albeit slowly, possessing no
Reynclds number independent asymptotic (non-zero) value. One might intuitively argue that
as the Reynolds number increases, the interfacial surface area available for mixing must
increase (uncer the action of the higher sustainable strain rates in the flow) and
therefore also the mixing rate. This argument, however, is incomplete in that it fails to
recognize that the thickness of the mixed fluid layer straddling the interface must be
decreasing, in fact, approximately inversely as the interface area is increasing, by the
forze of the same arguments. Consequently, these two effects must approximately cancel
each other. In particular, the model predicts that as the Reynolds number increases, the
associated diffused layer thickness must be decreasing at a slightly faster rate, since
the flow vclume fraction occupied by the mixed fluid 1is decreasing (slowly) with
increasing Reynolds number. This behavior is corroborated by the limited data available,
whizch indicate a morotonically decreasing volume fraction of chemical product with
increasing Reynolds number, in good quantitative agreement with the predicted Reynolds

number dependence.

It should be noted that the prediction is not that mixing ceases in the 1limit of
infinite Reynolds numbers. If one were to increase the Reynolds number by increasing the
downsirearm 2oordinate x, fcr example, the Integrated mixed fluid thickness §ép(x) would

increase almeost proportionally to the shear layer thickness 6(x), specifically

by (Se)
§nlx) - §(x) . (3.4a)
bg(Sc) + 1n(x/x¢)

Ccnsequently, however, the mixed fluid volume fraction would decrease logarithmically, or

in terms ¢f the Reynolds number,

&m By (Sc) (3.1b)
- - . L4b
5 a 3f "IN ( Re J

SAl N = -

53i5ci + “\1 8;1'1 R
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This result 1is a direct consequence of the assumed statistical weight and
normalization over the range of scales of the problem. In particular, accepting the
W(X) di ~ di/) statistical weight for the moment, the dependence on the local Reynolds

number enters through the ratio of the outer large scale § to the inner scale

Ao = g3/ Ax , where 8 = 3 and ix is the Kolmogorov scale, i.e.

8m B¢ (Se)
=2 . , (3.5)
§

Bo(Se) + <1n(—]>_

§
’\c
and where the subscripted angle brackets denote the ensemble average over the fluctuations
in the 1local dissipation rate €. We note that, again accepting the W(A)di - di/)

statistical weight, a non-zero asymptotic value for 8p/6 at high Reynolds numbers would be

the prediction only if (ll’l(ﬁ/XK) >c + constant, as Re + o,

We have examples of such behavior in high Reynolds number turbulent flows. In
particular, the skin friction coefficient for a turbulent boundary layer over a (smooth)
flat plate at high Reynolds number appears to decrease approximately logarithmically with
Reynolds number. For similar reasons, the pressure gradient coefficient for turbulent
(smcoth wall) pipe flow also decreases logarithmically with Reynolds number. It is
interesting to note, however, that in these examples the behavior will asymptote to a
Reynolds number independent regime, if the wall cannoct be considered -smooth compared to
the smallest scales the turbulence can sustain and interferes with their participation in
the dynamics, {.e. if a Reynolds number independent minimum scale is imposed on the
dynamics of the flow. Analogously, in my opinion, the assignment of an Eulerian, Reynolds
number independent volume fraction occupied by the homogeneously mixed fluid in the
Broadwell-Breidenthal model leads perforce to a Reynolds number independent mixed fluid
(and chemical product) volume fraction in the limit of large Reynolds numbers. In a free
shear layer, however, in which the turbulence does not have to contend with any intruding
rough walls or externally imposed minimum scales, the flow will generate its minimum
(dissipation/diffusion) scales, of ever decreasing size as the Reynolds number increases,

and which will participate in the mixing and dissipation dynamics unimpeded.

We recognize, however, that the Broadwell-Breidenthal argument {s not Eulerian.
These authors integrated the cascade time scale associated with each scale X and concluded
that the Lagrangian time to cascade to the Kolmogorov scale becomes independent of the
Reynolds number at high Reynolds numbers. This {s a «central idea in the
Broadwell-Breidenthal model. If one accepts it, one must also accept that fluid entrained
at an upstream station x4 cascades to the diffusion (Kolmogorov) scale by a station xg .,
such that Xg/x; is independent of the Reynolds number. The argument is important and, if
correct, difficult to reconcile with the proposed predicted shear layer mixing behavior at

high Reynolds numbers.




We shall examine the Broadwell-Breidenthal argument by inverting equation 2.7 to
yield the scaling for the differential time required to cascade from X to A +di. In

particular, we have

-dt v - —_—

a(X) et/3 31/3

1 di 1 dA
A

where ¢ = a(AU)3/6 {s the dissipation rate. We note here that in the
Broadwell-Breidenthal analysis, the dissipation rate was treated as a constant during the
cascade. It can be argued that this i{s not a valid approximation for two reasons. First,
because the distance to cascade is not small, corresponding to a non-negligible change in
5§ = §(x), and therefore ¢ in the process, and second, because ¢ must be considered as a
random variable with a Reynolds number dependent variance. It is possible to respond to

these objections, however, by a proper separation of the problem variables, i.e.
- e1/3(t) dat - a"1/3d .

Substituting for the dissipation rate and transforming to § as the independent variable,

we then obtain

ds
5173

- al73¢6) X-1/3 da

This can be integrated from a thickness 8§y = 8(xq) to a thickness 6k = G(XK) to yield

Sk
J at/3(8) 28 612/3 ,
8 §'/3

where we have used that *K « 8. To estimate the effect of the fluctuations in a we
compute the expectation value of the left hand side, which for the purposes of the scaling

estimate we will commute with the integration to write

8k
("R (4173 >, _ds 5273 .

61 §173

As Dbefore, the subscripted angle brackets denote the expectation value over the
distribution of values of the dissipation rate. This can be estimated using the methods

outlined in section 2.7 and we obtain
A

1/3 Re .~u/12

(—

<al/3 > -~ (a) Re
or

(recall y ~ 0.3). Substituting in our previous expression yields the desired result, {.e.

o

w
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_X_‘S 3 Re1 )U/s

X4 31/2 Recr

, (3.6)

where Re1 is the Reynolds number at x = x1 . While the preceding argument is not without
its own shortcomings, if we accept @ as a non-increasing function of the Reynolds number,
we note that the possibility that the distance to cascade is not Reynolds number

independent must be entertained.

This is an interesting observation, bearing also on Saffman's (1968) concern that the
available arguments in support of the assumption that a itself is Reynolds number
independent may not be sufficiently compelling. We note, however, that the conclusions of
the present model would survive in the event (which has not been disallowed here). In
particular, a weak dependence of & on Reynolds number, say, a - ag (Re/ﬁeo)'p , where
presumably O < p € 1, would produce only minor changes in the results (see equations 2.48
and 2.49). A weaker possible dependence, e.g. logarithmic, need not even be incorporatea

as a correction for any Reynolds number range of practical interest.

Finally, we return to the observation that the predicted asymptotic behavior in the
limit of infinite Reynolds numbers i3 traceable to0 the assumed statistical weight
distribution of scales in the inertial range, i.e. W(A)d\ - di/)x , as discussed in

section 2.6 . A very small deviation from this expression, for example

r da

woyan - (2) 2
A

O | >

where |r| « 1T, would produce only minor differences in the range of Reynolds numbers of
practical interest, but would alter the conclusions in the limit. In particular, the
mixed fluid fraction 8/ would tend to a (small, order r) non-zero asymptotic value in
the limit of large Reynolds numbers, or to zero with a weak power dependence on Re,
depending on whether r can be taken as positive or negative, and the (possible) dependence

of the scaled mean dissipation rate @ on the Reynolds number.

We conclude by observing that, from an engineering vantage point, the volume fraction
of mixed fluid within the shear layer, i.e. $8,/5, is expected to possess a (broad)
maximum at a Reynolds number in the range of 2x10% to 3x10Y4 (based on the local thickness
§ and velocity difference AU). This corresponds to the region shortly after the flow has
emerged from its "mixing" transition (Bernal et al 1979) to a fully three dimensional,

turbulent state.

* This is admissible under the revised similarity hypotheses of Kolmogorov (1962) and
Oboukhov (1962), which (even if weakly) impose the outer scale § throughout the inertial
range, or the fractal iddeas put forth by Mandelbrot (e.g. 1976). On the other hand, if
a power law is appropriate, the exponent r is likely to be small, since the argument of
no characteristic length scale in the inertial range (leading to the di/) distribution)
must very nearly be right.
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A SIMPLE MODEL FOR FINITE CHEMICAL KINETICS ANALYSIS
OF SUPERSONIC TURBULENT SHEAR LAYER COMBUSTION'
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ABSTRACT

A simple flow/thermodynamic model 18 proposed
to describe finite chemical kinetic rate combustion
in a turbulent supersonic shear layer for the
purposes of assessing Damkohler number effects in
such flows. Sample calculations and comparisons
for the H5/NO/F, chemical system and the Hp/air
system are described for a set of initial flow and
entrained

thermodynamic nonditions of the

reactants.

1. INTRODUCTION

Tne advent of supersonic chemical lasers and
the resurgent interest in hypersonic flight has
extended the range of flows for which estimates of
the rate of molecular mixing and combustion are

required to compressible high speed turbulent
flows. In this flow environment, the chemical
kinetics of fuel/oxidizer systems that are

conventionally regarded as fast may find themselves
in a regime wnere .ile rate of mixing, as wuictated
by the hydrodynamics, can overwhelm the rate of
chemical product assoclated heat
release.

formation and

We can conceptually cast this discussion in
terms of characteristic fluid aechanical
molecular mixing time (1,), and chemical reaction
time (rx), and their dimensionless ratio, i.e. the
Damkodnler number, defined by

some

m
ba = — ()
x
i Copyright (1987) by J. L. Hall and P. E.
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We note that in the 1limit of Da + = chemical
production must be regarded as taking place :n the
strained diffusion layers (flame sheets) tha: are
formed within the extent of the turbulent mixing
region between the reactant-bearing fluids, which
are entrained from each of the free streams: the
lean entrained reactant does not have a chance to
interdiffuse and homogenize on a molecular scale
before it is has reacted. - In that lim:t,
therefore, the rate of chemical product formation
is equal to the rate at which the lean reactant is
diffusing (on a molecular scale) {nto fluid
entrained from the other stream. In that case, the
rate of chemical product formation will be dictated
by the hydrodynamic entrainment and turbulent
mixing processes and, in particular, will be
independent of the chemical kinetics. On the other
hand, we note that as the Damkohler number {s
decreased an increasing portion of the entrained
flufds will have a chance to mix and homogenize on
a molecular scale before the reactants in that
portion have a chance to react. Finally, if the
fluid mechanics may be treated as unaltered by
vartations in the chemical kinetic rate, it |is
evident that the chemical product formation and
asscciated meat release attain their maximum in the
limit of Da - =. It 13 not pessible to make any
more product per unit time than the rate at which
molecular diffusion of the reactants proceeds.

Efficient hypersonic propulsion requires that
the assnciated turbulent combustion be realized in
as high a Damkdhler number regime as i{s feasible.
For experiments in high Reynolds number and/or
supersonic turbulence which attempt to estimate the
extent of molecular mixing within the turbulent
region, this is also an {important regime;
measurements of mixing,
time and space scales,

direct
in view of the associated
are generally out of the

question. On the other hand, in a flow/kinetic
rate regime in which the Damkohler number is
sufficiently high, chemical reactions suggest

themselves as the diagnostic probe of choice, since
the heat release, or other associated chemical
products, can serve as unambiguous markers for
molecular mixing.
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A mcdel which first considered the relative Broadwe.l & Mungal (1985) as tne basis for cthe:r
effects of mixing rate and chemi-~al kinetic rate analysis of the experimental investigation of

was formulated by Broaawell ('974} in an attempt t>  finite DamkOhler number effects in a sutsonic shear
analyze supersonic HF chemical laser performance. layer by Mungal & Frieler (1385). Broadwel. &
In that model, "the mixing 1is treated in an Mungal assumed that the rate of formation of tne

dealizead way wWith the rate characterized by a chemical product can be similarly partiticned as
sing.e parameter, the angle at which tne mixing taking place within a homogeneously mixed fluid
2

b

zone spreaas. The mixing, the chemical reactions, fraction and a flame sheet fluid fraction, wnere
and las:ing are allowed to occur simultaneously”. the assignement of these fractions i{= the same as
By means of this model, a serious discrepancy the one made for the amount of che..ical product :n
tetween the prerixed {constant mass) chemical the originai 8roadwell & Breidentnal formulati.n.
~eactor models (e.g. Emanuel & Whittiz- 1972},
whith were being usea tC analyze the suypersonic
sneir layer chemical laser performance, and¢ the
otserved dependence of the laser power on the U,
cavily pressure was resolved. - -

An  important aadition to this {dea was
contributed by Konrad (1976) who concluded, on the >___——
bas:s of direct measurements of composition {n UL
‘subsonic) shear layers, that the fluid carried in
the free streams of a shear layer is entrained into U,
the nmixing region easymmetrically; for equal R
density free streams, the high speed stream {8
entrained preferentially. An explanation for this
asymmetry, and a simple model for estimating the

FIG. 1 Shear layer entrainment and growth.

entrainment ratio E was proposed recently
(limotakis 1986). These considerations suggested a
zerotln order model for mixing in which the
principal role of turbulence, following the initial

stage of entrainment into the layer, 1is one We will not adopt the Broadwell-Mungal

resulting in a homogenization of the entrained description of chemical  product  formation,
fluids  (and  reactants) at a composition  Primarily because it will serve our purposes to
corresponding to the entrainment ratio E, i.e. to base the present discussion on an even simpler

a high speed fluid mixture fraction £g, given by flow/thermodynamics model that will allow a
realistic account of the chemical kinetics dyramils

to be computed relatively readily.
EE & — . (2)

Tnis simple plcture was used by Konrad to account
f~~ tne dependence of his composition fluctuations 2. THE PROPOSED MODEL

on the free stream density ratio. See figure 1.

It is our purpose in this discussion to
explore the {nterrelation between the rate of
entrainment and mixing, and finite chemical
kinetics {in high Reynoids number shear layers,
extending to supersonic flow. We will attempt to
do this in the simplest terms that capture the
salient features of this behavior, using two-
fuel/oxidizer systems as examples: the HZ/NO/Fz
system and the Hy/air system. While some of our
results will be peculiar to these two systems, many

Fluid that i{s mixed at the composition g of
equation 2 plays an important role in the Broadwell
% Breidenthal model (1982), in whicn the mixed
fluia is partitioned as comprised of homogeneously
mixed fluid at this composition and also as
resi1ding in straired diffusion layers. In tinis
partition, the homogeneously mixed fluid volume
fraction is regarded as a constant of the flow, and
‘for a given stoichiomentric mixture ratio) tne
volume fraction of the fluid residing in the flame

) ) of the conclusions are general and we would like to
sheets s assigned a volume fraction that {8 g

hope that the adopted simple formulation and

{nversely proportional to the square root of the ) ) ]
implementation can serve as a useful guide.

sroduct of the flow Reynolds number and the fluid

Senmi m in the :
dt numder (this was the suggestion The proposed scheme has three main components:

revised discussion of the model {n Broadwell &
Mungal 1986). This model was recently used by

J——




‘. the entralnment/mixing model,

ny

the thermodynamic model,

ana

cnemical kinetic model.

(W]

2.1 Entrainment/mixing formulation

W2 will adopt the simple idea suggested by
Kornrad (197¢), namely the one which views the
molecularly mixed fluid 1i1n the shear layer as
nomogenized at a single-valued composition dictated
by the entrainment ratio E (cf. equation 2). The
in turn, be computed
ng the simple discussed by Dimotakis

8y, Briefly, {t was argued in that discussion
t the (volumetric) entrainment ratio should be

entra.nment ratio E will,

ideas

Us = Ug , L
£ = -_— (v ;) . (3)
Jc -JZ

where Us 2 are the high and low speed shear layer
free stream velocities respectively, U, (s the
convection velocity of the large structures 1in the
layer, and &/x 1is the large structure spacing to
position ratio.

For subsonic flow, the convection velocity can
be estimated by applying the Bernoulli equation in
the large structure convection frame, in which it

should (approximately) apply on the 9treamlines
through the stagnation points 1in Dbetween the
vortices. This vyields (for equal free stream

static pressures),

By (Uy U2~ 05 (Ug-U)?,

or,

Uy - Ve D1 ]1/2 (4

Ue - U2 P2

The large structure spacing to position ratio L/x
{empirically) to be independent of the
density ratio and approximately given by

is found

L 1= Uy/uy
-~ = (.68 —mmm . (5)
X 1 . U2/u1
Comdining these obtains an
estimate fcor the volumetric entrainment ratio for
suybsonic flow given by

results, one then

P 12 o= Ua/Ua
e - (= {1+ 0.8 ——— . 5,
P 1o Us/u,

For supersonic flow, the convection veloc:ty
can be approximated using the isentropic relations
connecting the stagnation pressure (in the vertex
convection frame) and the static pressure in each
of the free streams, which for equal free stream

static pressures yields the implicit relation

Yqy-1 -
[1 . 1 MCTZJY1/(Y1 1) .
2

(7}

Yo Yo/ (Y5=1)
1 2 2 2
( ~— Me3)

’

where Yy > are the ratios of specific heats in eacnh
of the free streams and

Uy - Uq U, - Up

M - — M - —, (83
c1 3, 2

are the convective Mach numbers, with ay , the
speeds of sound in the high and low speed free
streams respectively. This relation was proposed
by Bogdanoff (1983) on the basis of a different set
of arguments. We note here that for 1low to
moderate supersonic free stream Mach numbers M,’z,
the convective Mach numbers will not be too high
and the incompressible relation (equation 4) may
serve as an adequate approximation.

While there is {insufficient information to
establish a reliable relation for &/x for
supersonic flow, it is a probably a fair guess that
L/x will continue to be scaled by the shear layer
growth rate 6/x. Agditionally, it is known
(Papamoschou 1986) that a supersonic shear layer at
the same velocity and density ratio will, for high
values of the convective Mach number, grow
considerably slower (by a factor of approximately
S) than 1its incompressible counterpart. This
suggests that, at high convective Mach numbers, 2/x
may be estimated by

(l/x)

=~ 0.2 (2/x) , (9)
MC,>.5

Moy €125

where /x at low

(M01 < .25) can be

Accordingly,

convective  Mach numbers
estimated wusing equation 5.
the second factor (1 +2&/x) in the
basic relationn for the entrainment ratio (equation
3) will be rmuch closer to unity for (high)

supersonic flow (Mc1 2 0.5) than for subsonic flow.

We can visualize the mixing process, in this
picture, as the flow tnrougn two streamtubes
(generally of unequal cross-section), with inlet




veloolities V. -U, and U.-Us respectively, {illing

3 fiur2 balloon (8t constant
witnh a m>2l2 rate that is the sum ¢l the
tWwC entrainment contridutions from each of the free
streams, Tne total number of mcles nT(t) in the
Talllen, at oany one lime t = x/U, represents the
tztal number cof meles of moleculariy mixec fluid in
tne laver, correspording to a mixed flulc thickness

fm. Tnis ls smaller than the total shear layer
tni2xkness &, tc the extent that only a (mole)
fraction £..5 cf the fluld within the shear layer

wedge boundaries (s mixed on a molecular scale.

The ratic of tne two entrainment feed rates 61 e
1’

accord witnh the

And na are then computed in
le the tctal feec¢ rate 18 such

entrainment ratio whi
correct at each

as o yield the value of 354(t),

staticn x =

See figure 2.

h20
( UC' U2)

frame

Convective
schematic.

entrainment/mixing

The species composition in each of the free

streams is specified via the mole fractions X“i of
trne species a carrjed by the i-th stream. This
yie.ds an entrainment feed rate for the species g

from each »f the free streams, given by

e

ap " Xa fper 1eT1.2. (10)

balloon are
times,

The contents of the
nomogenecusly mixed at all

regarded as
the respective
correct composition
That neignhboring balloons

feed rates guaranteeing the
tnerebdy.

‘equation <
‘.arge scaie structures) coalesce from time to time
Lo procduce larger balloons of the same composition
does not alter this picture as far as the chemica’
dynamics are concerned.

Before
entralinment/mixing
that an

leaving the discussion of the
component  of the model, we

snou.l note important ingredient 2f the

lent mixing process

u
ure, It is the effect

parlicular

he rate of
segment of the strained reactant

strain experienced by a
interface Dbeiween
the two entraine¢ fluids, as 1t cascaces in s
Lagrangian frame to the smallest scales at whicn it
ultimately homogenizes on a molecular 3cale.
Ignoring this

overestimation

effect will resu.t in an

of the effective chemical «inetic

rate, as we will discuss below.

2.2 Thermodynamics formulation

To compute the chemizal «inetics of tne

system, we need to keep track of the temperature
evolution in the homogeneous reacter, n
particular, in addition to the heat releasec :n the
chemical reactions, we need to
enthalpy flux which the entrainecd fluids contridut

to the total enthalpy of the contents of <the
balloon. This will be computed by assuming that
the entrained fluids are approximately brougnht to
rest in the balloon (large sczle) convection frame
adiabatically. This ylelds an estimate for the
stagnation enthalpy contributed in this frame from

each of the free streams given by

estlimate ~he

* * 1 2
Ri,e = hi,0 " E(Ui'uc) ’

where i = 1,2 corresponds to the high and low speed
streams respectively, h;.e
specific stagnation enthalpy (J/kg)

the i-th stream in tie convection frame and h; o is
’

is the resulting
contributea by

the specific (static) enthalpy of the i{-th free
stream. It will be convenient to express
quantities in molar form for the chemical

calculations below. Accordingly, we have for the

molar enthalpy (J/kmole) of each stream
« LW g -u? an
Pi,e = hp0 * S¢W2 Wy-Ud® H)

where <W>. jis the (mean) molecular weignt of the
{-th stream.

Assuming that the balloon can be treated as an
adiabatic system and that the kinetic energy cof the
internal motion (in the bdalloon convection frame}
{s negliglble?, we obtaln the cnergy equation {at

constant pressure)

Ny ehze - (12

* The latter assumption may have to be revised at

very nigh convective Mach numbers.




wnere f- js the total enthalpy of tne contents of
the balloon. Chemical reactions and combustion
notwithstanding, the total enthalpy changes only as
a consequence of the entrainment contribution.

The total enthalpy of the
expressible (for an

system {s also
ideal gas) as the sum of the
molar contricutions. Differentiating with respect

tC time, we have

- * °
L (naha * naha)

Q

T
3
]

We can use the relation ﬁn . Cpa%- where Cpy is
the molar heat capacity at constant pressure of the
a species and T is the balloon temperature, and
combine with equation 12 to obtain the temperature
evolution eguation (at constant pressure), i.e.

CpT = Hg = 7 nghg , (13
a

where Cp {s the total heat capacity of the system
contents at constant pressure and Ny {s the total
rate of change of the number of moles of the a
species (sum of entrainment feeds plus chemistry),

i.e.

a Nay * Ngp * Ny - (1)

2.3 Cheamical kinetics formvlation

The chemical kinetics calculations are
realized using the CHEMKIN (Kee et al 1980) code
package. In particular, borrowing from thelir
descripcion, we have for the j-th chemical equation

) 3ay Xg 3

L bay xq » (15)
a a

where the a, and by are the (integer)
stoichiometric coefficlents and Xg 18 the chemical
symbol of the a 9pecies. The production rate
Ckmoles/(m3.sec)] for the species a {s then

co.. ed 2% the sSum over all the chemical
© 2wt ‘ons, f.e.
% = I (vay=aay)qy . (16)
J

where Qg i3 the rate of progress variable for the
j~th cnemical reaction, computed as the difference
between the forward and reverse rates. For a
two-body chemical reaction, this {s given by

(2) aajy

qj - kr.J 2 Tal - er.j 2 Tal

(17a)

where (a] = n,/V is the molar concentration of the
a species with V = V(t) the balloon volume, and
kr’j and kr'J are the forward and reverse rate
constants for the j-th reaction. For a three-body
chemical reaction the rate of progress variable Iis
computed as

030« (1 ngylad ) qf?), (175)

Q

where {f all species contribute equally to the
reaction (e.g. any third body M in the vernacular)
the efficiency coefficients n,.  are all equal to
unity and the first factor in the expression for
qf3) is given by (ideal gas law)

n
- 7 a — - L . 1
E Nay (al L (o) - = (18)

The forward rate constants are computed assuming an
Arrhenius temperature dependence form, i.e.

E
ke, 3(T) = Ay TBJ exp(- EJ—T) . (19

while the reverse rate constants kr,J are related
to the forward rate constants through the
equilibrium constants of the j-th reaction. The
coefficients AJ, BJ and EJ. as well as any
non-unity three-body efficlency coefficients n,.,

must be specified for each chemical reaction j.

Using equation 16 for the species production
rate, we then compute the chemical rate of change
of the number of moles of the species a as neaded
in equation 14, using the relation

1 . .
— - t 20
e Pax(®) = eql®) (20)
where V(t) is the volume of the balloon, computed
in turn using the ideal gas law equation of state,
i.e.

RT(t)

V(t) = nq(t) 1 nglt) . (21)

Q

, np(t) =

The chemical reactions describing the Hy/NQ/F>
system are listed in the appendix, with the
Arrhenius coefficients for each reaction j. The
Hy/air system was used as documented in Smooke et
al (1983). By way of example, if a particular
species A is entrained as part of the high speed
fluid with a mole fraction X4, and as part of the




)

low speed fluid with

participates in a (say, J = 1) chemical reaction

a mole fraction XAZ' and

its evolution equation would be given by (note that

85y = ag, = 1, in this case)

T 1( . .
7= 7 (K m * Xgpnz)
(22)
nA nE
e 122y

The manner in which the volume V = V(t) enters on
the left nand side i{s, perhaps, noteworthy.

2.4 Model implementation

Having specified the
infusion history f,(t) and np(t), the temporal
evolution of the flow/chemical system can be
computed in the convective frame (which we can
transform to the fixed shear layer combustor frame

via the convective velocity, i.e. x = tU,).

entrainment/mixing

For an arbitrary history Ay(t) and ns(t), the
resulting non-linear system of equations |s
sufficiently complex to render drawing of general
conclusions difficult. While such an arbitrary
case can readily be studied numerically, it |is
possible to gain valuable {nsight by restricting
the discussion to constant n; and np, as
appropriate anyway to turbulent shear layers beyond
the mixing transition (Bernal et al 1979).
Additionally, {in the model, we will allow the
balloon reactor to be precharged with an (initial
amount and composition of reactants and at an
initial thermodynamic state (temperature To)
comnputed by assuming that while the entrainment
has proceeded starting from t = O, the chemistry is
not initiated until a time t = tg = x5 /U, .

The latter provision should be a useful
approximate description in the case of hypergolic
(or near-hypergolic) reactants that have Dbeen
entrained (but not as yet mixed) and which are
mixed on a molecular scale rather abruptly as they
move through the mixing transition at x5 = xpp.,
or, in the case of non-hypergolic reactants (for
the flow conditions) that are allowed to mix and
are ignited (by some external means) at 3some
convective time ty = tig - xig/ Ug - This is
equivalent to an entrainment/mixing infusion
nistory given by

e ——

t
J Ag(t')de’ = (23)
0

8§t
& ()
>
Re5=2x104 <
FIG. 3 Shear layer total and mixed fluid
thickness.
where ﬁi, corresponds to the constant

entrainment/mixing infusion rate from the i-th
stream, far downstream from the transition/ignition
region. This situation 1is depicted in figuc-e 3,
and is reflected in the growing total shear layer
thickness &§(t), corresponding to the constant rate
(per unit time in the convective frame) at which

fluid 1is entrained (inducted) into the layer, and
8p(t) corresponding to the constant infusi-n
(contribution per unit time to the mixed fluic’

flux the resulting balloon reactor (molecularly
mixed fluid) volume V(t). In this picture, the
balloon volume V(t), per unit span of shear layer,
is to be viewed as the product of a fixed
streamwise thickness dx and the mixed fluid
thickness Splt).

Finally, we note that {implicit in this
discussion 1s the assumption that the effects of
heat release on the fluild dynamics are small. In
the context of the present model, the relevant
question is the effect of the neat release on the
entrainment ratio. At least for subsonic flow,
this issue was specifically addressed in the work'
documented in Hermanson (1985) and Hermanson et al
(1987). Based on the conclusions drawn from that
work, one could certainly corrected
estimates for N, and ny as a function of heat
release. On the other hand, the main conclusion {n
that discussion was that these effects are small
and would therefore be unwarranted by, and
tnconsistent with the spirit of the simple
flow/mixing model proposed here.

provide




3. RESULTS and DISCUSSION

3.1 General properties

Assuming that the entrainment/mixing flux ﬁi
i-th stream s as described 1in the

prececding section, we may draw the following useful

from  the
conclusions.

Provided it ignites and that the entrained
reactants do not quench the reaction, the system
(balioon contents) reaches a final
equilicrium temperature Tf wnich is equal to the
adiabatic flame temperature of a constant mass
reactor at chemical equilibrium, corresponding to
dictated by the
As a corollary,
v(t) ~ v at

p = constant,

reactor

an atomic composition
entrainment/mixing flux ratio E.
we have V = constant and therefore
equiiibrium, since ﬁT = constant,
and, in the limit, T = constant.

The second important conclusion is that i{f the
lean (or rate-limiting) reactant is entrained from,
high speed stream (stream 1), the
evolution of the system is a function of a single

say, the
dimensionless parameter

n1rx
8 = —, (2u)
Ny(tg)

where “1(t5) is the (precharge) number of stream !
moles at t=ty, Ay is the (constant)
entrainment/mixing rate from stream 1, and Ty is
the characteristic chemical time, defined here as
the maximum slope thickness Intercept of the T(t)

curve with the T = T, line for a constant mass
reactor, as will be illustrated Dbelow. In
particular, for Q «€ 1, as we would expect, the

system evolution is the same as that of a constant
mass reactor, since the asymptoti{c temperature rise
will be reallzed before any substantial amounts of
entrained reacts have been added. In the opposite
limit of @ » 1, however, the important and perhaps
surprising conclusion is that not only the final
equilibrium state but also the system evolution 1s
independent of the entrainment/mixing rate 61.
This behavior i3 depicted in figure U4, {in which

the scaled temperature rise {n the mixed fluid
reactor, i.e.
T(t T(t)"To
sty 9 (25)
AT T.-T
f £7 2

is plotted as a function of time, for a typical low
heat release HZ/NO/F2 reactant/diluent combination
as used in the Mungal & Dimotakis (1984) data and

in the Mungal & Ffrieler 1985 Damkohler number

study. The solid corresponds Lo the
evolution of a constant mass (Q = 0 ) reactor. The
dashed line is the maximum slope extrapolation of
that «curve, used to compute the intercept with
AT(t)/8T¢ = 1 at the time t = 1, - Finally, the
dot-dashed curve depicts the asymptotic,
entrainment-dominated reactor (computed using a
value of Q@ = 100). The behavior in the latter case
is asymptotic {in the sense that additionai
increases in @ would not discernibly alter the
resulting AT( t)/ATr curve.

curve

L0~ : 1 o PP
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/
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log,q (tssec)
FIG. 4 Constant mass (solid line) vs.

entrainment-dominated (dot-dashed line) mixed
fluid reactor behavior.

3.2 Using the model

We will demonstrate the use of the proposed
model by attempting a calculation of the Mungal &
Frieler (1985) DamkShler number study data. In
that experiment, the effective rate of reaction of
the H,/Fp/NO system in the mixing zone was
controlled by varying the concentration (mole
fraction) of NO that was premixed with Hy in the
high speed stream. The experiments were conducted
in the shear layer facility described in Mungal &
Dimotakis (1984), with 2 free stream velocity ratio’
of Us/Uy = 0.4 and a density ratio pp/py = 1. The
high speed stream was comprised of (mole fractions)
8% H,, a nominal mole fraction of NO of
[NOlw = 0.039%, and the rest N> at room
temperature. The low speed stream was composed of
13 F, and 993 No, also at room temperature.

The HE/F2 reaction requires free F atoms,
whic . under these conditions are produced via the

NO » F, » NOF + F reaction (see Appendix A). The




xinetls rate can be reduced to zero in the absence

of any free F atoms, a situation that
‘ander these conditions) if there is no premixed NO
in the H, bvearing stream.

xinetic rate controlling

{s realized

Accordingly, the
parameter in the
experiments was the concentration of the premixed
NC, that the authors c¢ited normalized by the
neminal concentration [NOJs = 0.03% . In
farticular, experiments were conducted at
INO. “INOJs = 1732, 1723, 1216, 1/8, 174, t/2, 1,
3/2 and 2 at the lower velocity runs (U; = 22m/s),
(NO] /[NCis « 1/16, 1/4, 1 and 2 at the
higher Reynolds number run (U; = Wlm/s).

and at

The experimental uncertainty in determining

the amount of [NC] i{s estimated to be of the order

of 0.03[NO)« (laboratory record, G. Mungal
private communication). The experimental
uncertainty i{n the total amount of product,
computed in those measurements as the volume

fraction 4&p({N01)}/8 1in the layer occupied by
chemical product, was estimated to be of the order
of 3% to 5%.
10 —
.8 -
= B~
Z
=
2 -
0 ’ -
-6.0 -5.0 -2.0 -1.0
logyq (t/sec)
FIG. 5 aT(t)/ATy computed for Mungal &

Frieler (1985) data. Curves from left to
right for [NO]/[NOly of 2, 372, 1, 1/2, 1/%,
1/8, 1716, 1/23, 1/32. Vertical dashed
lines for (scaled) times t' = 2.75ms, 4.Ums
respectively (see text below).

The fact that the Reynolds number {8 different
in the two sets of runs has, of course, no effect
on the shape of the model AT(t)/ATe curves. Since
other parameters were kept fixed, these curves are
only a function of the [NO]/[NOJ. ratio for these
experiments. The results of the computations
corresponding to the experimental conditions are
piotted in figure 5 along with the Mungal & Frieler
data and their experimental error bars.

EEEEEEEEE—————

Tne dependence of the chemica. procuct 64p/3

volume fraction on the _NO]J/INC]s ratio for the two

Reynolds number runs is8 read off such a family of
curves at a fixed Lagrangian time, which is
different for each Reynolds number case. The

reactor is precharged to the amount and composition
corresponding to the conditions at the end of the
mixing transition region, as described in section

2.4 . The experimental Lagrangian time is given by
X = Xp
vt — (26)
. ’ AN
o

where x is the location of the fixed measuring
station (= 45.7em), X5 is taken to be at the end
of the mixing transition (hypergolic reactants) at
AU<8/v = 2x10% (as recommended by Mungal & Frieler
1985), and UC is the convection velocity. This
yields estimates for the experimental Lagrangian
time at the measuring station of t = 20.8ms and
t = 13.1ms for the low and high Reynolds number
experiments respectively.

In using the model to estimate the
experimental data, we note that the reaction rate
coefficlents for the Hy/NO/Fp system are better
known than most rate coefficients. 1In particular,
for that system they are known to within a factor
of 3, or so0. While it is not possible to make
general statements without a specific sensitivity
analysis, a qualitative estimate of the global
effect of such an uncertainty on the calculated
quantities can be made for the
entrainment-dominated reactor (Q » 1) as follows.
A rescaling of the reaction rate coefficlents by a
dimensionless scaling factor «, k;'J -
‘kr.J , produces the same chemical evolution as the
unscaled coefficients did at a (scaled) time
t' = t/x.

i.e.

There 1is an other, possibly more {important,
effect we have fignored that may have similar
time-scaling consequences, namely the unsteady
evolution of the rate of strain ¢ that is imposed
by the turbulent field on the interface between the
two interdiffusing fluids. 1In solving the unsteady
diffusion problem, one can show that for times that
are large compared to the reciprocal of the strain
rate, i.e. for t » 1/0, the solution to the
unsteady diffusion problem in the presence of an
imposed strain rate, tends asymptotically to those
of the unsteady diffusion probiem in the absence of
an externally imposed strain rate, evaluated at a
time t = 1/¢ (Carrier, Fendel & Marble 1975, Marbdle
& Broadwell 1977, Dimotakis 1987). Accordingly,
instead of interpreting the corresponding solutions
as functions of the product of an effective kinetic
rate ks and time, 1{i.e. ks t, they should be
interpreted as functions of the ratio ke/g. For a




two d¢imensional shear layer, the strain rates are
caled by AU/8 and therefore 1/¢0 - §/4U - t. We .
should also mention that Broadwell & Mungal (1986), ‘ |

n
—

who provided an approximate solution for a finite 10:— - -
kinetic rate analysis of a strained flame sheet :. e‘L ﬁ/H .
using a control volume approach, also found that g K -

= the solution dependence on the kinetic rate and ;“—‘ si— / .
rate of strain is via the group ks«/c. Since the ‘-‘Q- ! / ;
predominant fraction of molecularly mixed fluid is s sk / -

- associated with the smallest scales of the < 1 , '
turbulent flow, where not only the rate of strain o 2+ —
is high but also the rate at which it, in turn, i
increases-with Lagrangian time for each fluid »C_’E'fo _:‘.5 —xlo _‘5 ‘o ‘5 “0
glemenr_ (6) {s high, this effect is potentially Logy (NG} / (M0l 4 )
important.

. (o)
For both of these reasons we will accept an

undetermined time scaling factor x as an adjustable
parameter. Uncertainties in the kinetic rate FIG. 6 6p([NO])/6p(ENO]l) for Mungal &
coefficients aside a more realistic hydrodynamic Frieler (1985) data. (a) low Reynolds number
account of the turbulent entrainment/mixing process data (U; « 22m/s), (b) high Reynolds number
would hopefully remove the need for such an data (U1 - Uim/s .

adjustment. We note here, however, that this is
quite an aside, as many important kinetic rate
coefficients are often uncertain by factors 1in
excess of an order of magnitude.

3.3 Supersonic H,/NO/F, system calculations

1 2{ "7 T T T

1.0?»— ¢ - Sample calculations at 1 Atm pressure for a
- i _¢_ supersonic high speed stream bearing Hy, NO and N>
g fr 7 at My =~ 3.0, and a subsonic low speed stream
- fn 5;’_ / ] bearing F, and N, at My «~ 0.3 and a stagnation
E X temperature of 300 K were performed. The AT(:)/ATr
_g_ 4' K : | evolution of the system is depicted in figure 7 for
g . high speed stream stagnation temperatures of 300K
2'_ N and 600 K at low reactant concetrations. Note that
| the difference in the final temperature rise ATy in
0 L_. O 1 1 1 the two cases Is due to the difference {n the
20 -1.5 -1.0 -5 -0 -5 1.0 entrainment ratio. The increase in the effective

20940 (N0} / (NOI ) chemical kinetic rate is manifest,
Fig 6a A study of an additional increase in the

effective rate was undertaken by raising the

The resulting computations are depicted In  preactant concentrations in both streams, keeping
figures 6a and 6b, for the low and high Reynolds  tne stagnation temperatures for the high and low
number runs respectively. The value of the time speed streams at 600K and 300K, respectively.

scaling factor used to compute these curves Was  Tne resulting calculations are depicted in figure
« =« 5. The resulting (scaled) Lagrangian times t' 8.

corresponding to the two sets of data (t' = 4.4ms,
2.75ms, respectively) are indicated by the
vertical dashed lines in figure 5.

Discounting for the need of the time-scaling
factor x, we see that the salient features of the
data are captured correctly, especially considering
. the simplicity of the hydrodynamics description.
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FIG. 7 AT(t}/ATy computed at 1 Atm (static)
pressure, for a 2%Hy/0.15N0 /7 97.9%N>
My = 3.0 stream, and a 2% F, / 98X N, stream at
M5 = 0.3 and a stagnation temperature of

300K . Solid line and dashed line for a high
speed stagnation temperature of 300K
(8T¢ = 128K) and 600 K (ATp = 158K)
respectively.
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FIG. 8 aT(t)/8T, computed at 1Atm (static)
pressure, for a H2/0.1$NO/N2 stream at
My = 3.0 and a stagnation temperature of
600K, and a Fa/N, stream at M, = 0.3 and a
stagnation temperature of 300K . Solid line
for 2%H, and 23F, (aTy = 158K), dashed line
for 63H; and 63F, (aTp = 459K), dot-dashed
line for 20%H, and 203F, (AT, = 1,353K).

As can be ascertained from these calculations,
characteristic chemical reaction times in the range
of 10 us to ' ms can be attained by such means.

3.4 Supersonic Hy/air system calculations

Calculations using the Hz/air chemical system,
with flow conditions for a hypothetical hypersonic
vehicle are described below. It 1s assumed that
the H, stream has been preheated to
1,500K, utilized as a coolant, and
additionally heated in a precombustion chamber
using a portion of the inlet air, as required to
reach a stagnation temperature of 2,200K. It is
subsequently discharged in the primary combustor at
My = 1.25 to form the Llow speed stream of a
Supersonic shear layer. The high speed stream is
assumed to be air at a Mach number M; equal to 1/3
of the flight Mach number M, and at a stagnation
enthalpy corresponding to a static temperature of
300K at M, .

bearing
as it is

Figure 9 depicts the
temperature T(t) calculations,
number of M, = 12 and (static) pressures in the
shear layer combustion chamber ‘of 0.75, 0.5 and
0.25 Atm. Note that whereas the reactants ignite
increasingly rapidly as the pressure is raised,
equilibrium is attained extremely slowly, as a
consequence of energetic minor species which in
turn reach their equilibrium concentrations
extremely slowly (3 time decades), independently of
the pressure at these conditions.

resulting absolute
for a flight Mach

2600

2400

{K)

2200

Tit)

2000

1800 “ ——At———L L L
-6.0 5.0 -4.0 -3.0 -2.0 -1.0
1094q (t/sec]

FIG. 9 T(t) computations for a hypothetical
hypersonic flight vehicle at M, « 12, for
p = 0.75 Atm (solid line), p = 0.5 Atm (dashed
l{ne) and p = 0.25 Atm (dot-dashed line).

Calculations were also performed at a fixed
static pressure of 0.5 Atm to illustrate the effect
of flight Mach number M,. It is important to note
that the main consequence of increasing M, is the
attendant increase in the initial mixture
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temperature (T, in the notation of section 2.4).

N S
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10g4q {t/seC)

-1.0

FIG. 10 T(t) computations for a hypothetical
hypersonic flight vehicle at a static
pressure of 0.5 Atm. Solid line for M, =~ 9,
dashed line for M, = 12, dot-dashed line for
Ma = 15 and dot-dot-dashed line for M, = 18.

The conspicuous
temperature

decrease in the equilibrium
rise ATr is a consequence of the
increasing participation in the final equilibrium
population of energetic species, which under these
conditions of increasing absolute temperature
cannot really be considered as minor.
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FIG. 11 Normalized specific enthalpy

coefficlent for nypothetical hypersonic shear
layer combustor contribution.

In an effort to assess the relative
contribution of the shear layer combustion to the
overall enthalpy release, we have estimated the

—

coefficlent 2Ah'/U§ of the specific enthalpy
release at the end of a 1 meter shear layer

combustor, multiplied by the estimated shear iayer
thickness §/x, as computed from the data in figure
10. The results are depicted in figure 11 ., Note

that the rapid decrease from M, = 9 to M, « 12 is a
consequence of the transition of the §6/x growth
rate to the supersonic regime (Mcl > 0.5).
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Appendix: The H,/NO/F, chemical system

Chemical equations

t.ONO+ Py ¢ NOF + F

2. NO+F +M ¢ NOF + M

3. H ¢ F ¢t HF + F

4, F + H, & HF + H

5. Fp + M s + F+M
6. HF + M s + F+ M
7. H2¢M s + H+ M

Rate Coefficients
A 3 £

1. u.2x10'" o.0 2285

2. 3.0x10'® 0.0 0

3. 3.0x109 1.5 1680

4, 2.6x10'2 9.5 610

5. 2.1x10'3 0.0 33700

6. 3.1x10'3 0.0 125000

7. 2.2x10'2 0.5 92600

These values are derived from Baulch et al [1981]
and Cohen et al [1982].
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On the Instability of Inviscid, Compressible Free Shear Layers

Mei Zhuang®, Toshi Kubota® and Paul E. Dimotakis'
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Abstract
The linear spatial instability of inviscid
compressible laminar mixing of two parallel
streams, comprised of the same gas, has been

investigated with respect to two-dimensional wave

disturbances. The effects of the velocity ratio,
temperature ratio, and the temperature profile
across the shear layer have been examined. A
nearly universal dependence of the normalized

maximum amplification rate on the convective Mach
number is found, with the normalized maximum
amplification rate decreasing significantly with
increasing convective Mach number in the subsonic
region. These results are in accord with those of
recent growth rate experiments in compressible
turbulent free shear layers and other similar
recent calculations.

Introduction
The instability of inviscid, laminar,
two-dimensional shear layers in both
incompressible and compressible flow has been

studied in the past.

For incompressible parallel flow, the linear
spatial instability of the hyperbolic tangent and
Blasius mixing layers was investigated for
different values of the ratio between the
difference and sum of the velocities of the two
co-flowing streams by Monkewitz & Huerrel. They
found that the maximum growth rate is
approximately proportional to the velocity ratio.

For compressible flow, Lessen, Fox & zien2
found that increasing the Mach number of the flow
tends to stabilize the flow. Gropengiessez3
studied the instability characteristics of
boundary layers at various free stream Mach
numbers and temperature ratios. The linear
stability of a shear layer of an inviscid fluid
with two-dimensional temporally growing
disturbances was considered by Blumen, Drazin &
Billings?. They showed that the flow is unstable
with respect to two-dimensional disturbances at
all values of the Mach number. They also showed
that there exists a second unstable mode which is
supersonic and decays weakly with distance from
the shear layer. For compreasible flow, however,
the effects of shear layer Mach number,
temperature ratio, velocity ratio, and temperature
profile on the stability characteristics are very
complicated. These authors offer no prediction
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° Professor.
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about what the combined influences of these flow
parameters will be. Recently, Ragab & wuS studied
the influence of the velocity ratio on the
stability characteristics of the compressible
shear layer, and they also investigated the effect
of the convective Mach number, as proposed by
Papamoschou & Roshko®. Their results indicate the
convective Mach number is a parameter which
correlates the compressibility effects the
spreading rate of mixing layers.

on

Papamoschou & Roshko performed experiments on
compressible shear layers and suggested the
convective Mach number (M.) as the appropriate
parameter acaling the effects of compressibility.
This is defined for each stream as:

Uy - Ug
Mcy = — '
21

where Uy, Uz and a;, a; are the free stream
velocities and speeds of sound. The quantity U,
is the convective velocity of the large scale
structures and was estimated as ﬁc by Papamoschou
& Roshko assuming that the dynamic pressure match

at stagnation points in the flow (Coles?,
Dimctakiss). For compressible isentropic flow,
i.e. (Papamoschou & Roshko)
Y1 Y2
-1 _ - -1 _ -
(1 B2 Z) Wt L Blad) T, o
where Yj, Y are the ratios of the specific heats
of the two streams, and
. Uy - T N Oc - vz
Mep = — Meg = — 3
a a2

For Y; equals Y, U. can be obtained by

aguy + aj U, o
ay + a2

which,
specific

for equal static free stream pressures and
heats, reduces to the incompressible
expressions. They suggested that the growth rate
of a compressible shear layer, normalized by the
growth rate for an incompressible shear layer,
might be expressible as a universal function of
the convective Mach number M.j, which is valid
over a wide range of velocity and temperature
ratios of a shear layer. They also found that the
normalized growth rate decreases significantly
with increasing M;.

The numerical calculations described here
were performed under the assumptions of linear
instability theory. The convective velocity is
estimated as U,=C, (Ha_ck9 197%). Therefore, a
convective Mach number (M) for each stream can be




written as:

Uy - Cp " Cp-Up
- , Moy = —— (s
any 32

Mcy
where C, is the real phase velocity of the
disturbances.

The purpose of the present studies is to
investigate the combined influence of the
convective Mach number (M.), which is different
from the one used by Ragab & Wu (ﬁc), the velocity
and temperature ratios, and the temperature
profiles of the flow on the linear stability
behavior of compressible shear layers. Studies
are made of the case of inviscid flow under the
assumptions that the gases in the two streams are
the same, the main flow can be treated parallel,
and that the disturbances in the flow are of small
amplitude. The range of the unstable frequencies
and wave numbers were numerically calculated for a
two-dimensional, spatially growing disturbance.

Basic disturbance eaquations

We consider a two-dimensional flow of two
parallel streams. With upper stream quantities as
the reference and the local layer thickness § as
the length scale, the dimensionless quantities of
the flow in Cartesian co-ordinates can be written
as usual

or, for the general field quantity
Qix,y,t) = Qly) + Q' ix,y,t),

where 6 is a profile of the main flow, and Q' is
the corresponding disturbance amplitude.

Consider now the disturbance to be a wave
propagating in the x-direction. The disturbance
quantities in dimensionless form can be expressed
as?

{u',v',7",p'yp’ } =

{ fly),ad(y),0(y), . r(y),®(y) }exp [ia{x -ct}), (6)

where @ is a complex wave number, and ¢ is a
complex wave velocity. In the case of negligible
viscous effects, the linearized disturbance
equations for a 2-D compressible fluid with the
saxge gas constants and specific heats are given
by

Continuity : i (U-C)r+p (@ +if)+p' ¢ =10 (7a)

Momentum 1M125[1(5-c) £+U @] = ~4ix (7b)
2 — -

'1M120 plitu-c) ¢l =-n' (7c)

Energy Pli(U-c10+Tr @) =~-(y-1) (8" +if) (7d)
1 r 2]

State - = =+ =, (7e)
P ) T

where M; is the upper stream Mach number and
primes here correspond to d/dy. These equations
can be reduced to a second order differential
equation for the pressure disturbance?, i.e.

20" T 2 My 2
" - (= - —)m -a“ (1- = (U-c) 1K =0. (8)
U-c¢ T T
Asymptotic Behavior of the Eigenfunctions
The asymptotic behavior of the eigenfunction
n(y) for y—+te is found from Equation (8). With
y—*ew, U and T are constants, and U', T’ are
zeros. In that limit, Equation (8) becomes
- AfR =0, (9)
with
2 2 MZ 2
lk =Q {l'—_l—(Uk'C) ]‘Ak*l\kr+mki ' (10)
Tk
and k=1, 2. Therefore, from (10) we get

}‘k - lkt*ilki = il\kl/z

and the solution for large |y| can be written as
R o= Agexp(-Ag iyl) , (11
where Ay is a complex constant.

Since we have only considered the case of
amplified disturbances (a; <0y, the boundary
conditions for both supersonic and subsonic
disturbances can be expressed by X (y—te) 50 and
R (y—t) 0. In order to satisfy the boundary
conditions, we set A , >0, and get

y = yj—r+ee, X = Ay exp(-Ay) (12a)

y = yy—-, x = Azexp(hy) , (12b)

where

A = Agp + iRy =
1 L 1 1/2
(;(l/\kl*/\kr)ll/z"'lszgnl/\ki)l—z-(lAkl-Ak,_.)] /_

Formulation of the Eigenvalue problem

The eigenvalue problem is defined as follows.
For a given real disturbance frequency B B=ac,
the eigenvalues a, and aQ; are to be determined in
such a way that the eigenfuctions X, (y) and x;(y)
satisfy the boundary conditions. Specifically, we
used a Runge-Kutta method to solve the eigenvalue
equation, with (l12a) and (12b) as boundary
conditions. The eguation was integrated from one
side of the boundary (y=y;) to the other side
(y~y2). The correct a was obtained for a given B
by matching to the boundary conditions.

Velocity and Temperature Distributions

Lock’ s10 numerical calculation of the
velocity distribution for a compressible laminar
boundary layer, suggest that the velocity profile
for compressible laminar shear layers is well
approximsted by a hyperbolic tangent profile. So
we assume that the dimensionless mean velocity
profile is described by a hyperbolic tangent
profile represented by the form

Uty) = n(y) + Ug {1-m(y)) . (13)




where Ug=Up/U; is the velocity ratio across the
shear layer, and 2n(y) -1 is approximated by a
hyperbolic tangent. See mean velocity profiles
Uty) in Fig. 1.

We note that the linearized flow equations do
not prescribe the mean temperature profile.
Accordingly, two different kinds of temperature
profiles have been considered. One conforms to
the Crocco-Busemannils 12 relation, wherein the
total temperature profile T, (y) for an equal ratio
of the specific heats of the two free streams is
represented by

Tely) = Tepnly) + Tep (1 -TUy)] , (14)
where Ty, T¢p are the free stream total
remperatures. This yields the dimensionless mean
static temperature profile,

2
(Yy~-1) M
2

where M; is the upper stream Mach number and ¢y,
cp are constants which satisfy the boundary
conditions on the temperature profile. Such mean
temperature profiles ¥(y) for M; =5 are shown on
Fig. 2. The other kind of dimens‘onless
temperature profile is obtained by assuming that
the dimensionless density discribution across the

2 , (15)

"A'_'(y) =cy + czﬁ(y) - (y)

shear layer «can also be approximated by a
hyperbolic tangent profile, i.e.
Ply) = nty) + ppll-n(y)] , (16)

where pg=py/py is the density ratio across the

shear layer. Therefore, for a shear layer
compr:sed of the same gas, the dimensionless
temperature profile is T(y) =1/ ply). See Fig. 3.

Rasults
For a given combination of free stream Mach
number M;, temperature ratio Tg (T2/T;) and
velocity ratio Ugr. the linear instability
characteristics were calculated, yielding the most
unstable eigenvalue (G =Opn, +1i0y;) and its
corresponding real frequency Bm. The real phase

velo-aty Cp, of the disturbances was obtained as
Bn/@nr. . This yields the convective Mach number
M.1 and M., from Eq. (5).

Different combinations of wvelocity and
temperature ratios using a velocity and
temperature profile from Eqs.(13) and (15) were

investigated for a convective Mach number M.; from
0 to about 1.5. The velocity profiles for
Ugp=0.25,0.5,0.75 asppear in Fig. 1 and the
temperature profiles for Tp=0.5,1.0,1.5 in
Fig. 2. Results shown in Figs. 4 -9, which were
obtained from nine different combinations of Tp
and Up, indicate that if the most unstable
eigenvalue for a compressible shear layer |is
normalized by its value corresponding to an
incompressible shear layer(at the same velocity
and temperature ratio), the ratio is well
approximated as a function of the convective Mach
number only, i.e.

max[ -ai(uzlul,rzfrx,ﬁcl)}

max { -ay (U2/U1172/11,ﬁc1 =0) }

8, (Mc)
8, (0)
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Fig. 1 Hyperbolic tangent mean velocity profiles

for different values of the velocity ratio Up/U;.
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Fig. 2 Crocco-Busemann mean temperature profiles
for different values of the temperature ratio
T2/Ty, for the case U/U; = 0.5 and M; = 5.0.

Moy =1.54, ---= M3 =1.13, =v=e Mgy -‘_1.0.
s
71/7‘-0 ay
------- Ta/fTy=1.0
——-— - Ta/Tie2.0
A}
N,
\\
- 0 ] \‘~\
! ‘"‘~
\\
1
| \
L]
)
!
1
- A 1
° K] 1.0 1.8 2.0 2s
Yiy)
Fig. 3 Hyperbolic tangent p(y) mean temperature

profiles for different values of the temperature
ratio To/Ty.

where §,=d8/dx for the shear layer of the
particular free stream conditions. The solid line
estimste of &,(M.1)/8,(0) in Figs. 4-9 was
computed by wusing all the data of the nine

different cases, and least squares fitting the




normalized maximum ampligication rate versus the 1.04
convective Mach number M.;, for the range of M., Ta/Ti=0 s
from 0 to about 1.5 with a function of the form o Up/uy = 0. 28
o ugp/uy =0 8
~ N ” " S a Uy/Uy =0 78
Sxtey) +pgle! p2MZy1+ p3Mdit paMd) - 1), (18 & Fifey)
8, (0) v
where § :
v
pg = 0.956174 pr = 1.53471 < -
p3 = -1.22389 pg = 1.83827 ? o
. 2o
Note that &8, (Mc1—%)/8,(0) = 1 -pg, and that the °a o o
coefficient p; is related to the second derivative L
at M.1=0, etc. Note also that these results °° s Lo 18
suggest that F’(Mc1=0) = 0, as might have been ey
argued a priori. The results, shown in

Figs. 4~9, also suggest that the normalized
maximum amplification rate decreases significantly
with increasing M.; in the region Mc3i<1.
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Figs. 4 -9 Normalized maximum amplification rate

vs Hcl .

In the second set of calculations, the mean
temperature profile was specified via Eq.(16),
i.e. T(y) =1/ ply). The resulting temperature
profiles for Tp=0.67, 1, and 2 are plotted in
Fig. 3. The velocity ratio Ug=0.5 with each of
these three temperature ratios was studied for the
convective Mach number M.; from 0 to about 1.5.
The results, shown in Fig. 10, substantiate the
convective Mach number as the relevant .
compressibility parameter and also display good
agreement with the plot 8,(Mg))/8x(0) vs. Mgy
obtained from £q.(18), even though these two mean

n:(-‘l/-n-(w‘);‘c‘-o

m

M




temperature profiles are very different at
supersonic convective Mach numbers (see
Fige 2, 3).

1.0

max(-wy)/men{~ay)g -0
n

Fig. 10 Normalized maximum amplification rate vs
M 1 for hyperbolic tangent mean tengyerature
pgofilea comparison with E‘(Mcl)

with U, calculated from Eq.(4) and C,
obtained from the numerical calculations under the
linear theory, M., does not necessarily equal M.;.
In fact, even the real phase velocity may not be

unique for supersonic convective Mach number,
because of the existence of a second mode.
Blumen, Drazin & Billlnqs‘ have noted this

behavior for a shear layer of an inviscid fluid

with two-dimensional temporally disturbances4. we
can see that, for both temperature profiles
(Eq.(15) and Eq.(16) with T{(y) =1/p(y) )}, there

are very small differences between M,y and Mg

from the plot of (Mq; -Mey)/Mey vs. Mgy for
Moy S, but the,  differences only become
substantial when Mc)>1. See Figs. 11, 12. We
only studied the cases for M.; <1.5, since shock
waves can exist in a shear layer at high
convective Mach numbers and therefore, the
validity of a 1linear description of these

phenomena would be suspect.

A comparison of our estimate of Gx(ﬁcl)/&x(O)
with Ragab’s numerical data and with Papamoschou’s
experimental data is made in Fig. 13. The data
from our calculations are very close to Ragab &
Wu’s. The difference between M.; and Mc;, though
not small in the region M.; >1, does not affect
the results, since the normalized amplification
rates are very small in this region. According to
Papamoschou & Roshko’s experimental data, the
growth rate of the shear layer tapers off as the
convective Mach number becomes aupersonic. As
opposed to their findings, however, the growth
rate of our calculations decreases to ero as
M.; ®» 1. Preliminary calculations suggest that a
larger value for the growth rate at large M.; is
exhibited by more complex velocity and/or density
profiles.
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Fig. 12 Normalized difference between M and M
vs M for hyperbolic tangent mean temperature
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Concluaion

The influences of the convective Mach number,
the velocity and temperature ratios and the
temperature profiles of the flow on the linear
spatial instability characteristics of a plane
shear layer, formed Dby the same gas, were
investigated. It was found that there is a nearly
universal dependence of the normalized maximum
ampiificat on rate on the convective Mach number,
and this amplification rate decreases
significantly with increasing Mg in the region of
Moy < 1.
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Abstract
This work is an investigation of the mixing
cf the nozzle fluxid of a round turbulent Jjet with
tne entrained reservoir fluid, using
laser-Rayleigh scattering methods. Our

Teasurements, at a Reynolds number of 5000, cover
the axial range from 20 to 80 jet exit diameters
ani resolve the full range of temporal & spatial
cencentration scales. The measured mean & rms
values of the concentration, and the mean scalar
dissipation rate, when estimated from the time

derivative of concentration, are consistent with
jer similarity laws. Concentraticn fluctuation
powezr s:-:tra are found to be self-similar along
rays emanating from the 3jet wvirtual origin. The
prcbability density funcrions for the
csncentration, the time derivative of
concentration, and the square of the time

derivative c¢f concentration,
also self-similar along rays.

are compiled and are

Introduction
Background
The free turbulent jet, a small source of

high speed fluid issuing into a large quiescent

reservoir, is one of the classical free shear
flows. It has been the subject of experimental
work for more than 50 vyears (Ruden??® 1933,
Kuethe " 1935) and has found broad application in

combustion systems as a means of mixing reactants.

It is conventionally accepted that profiles
of the mean jet fluid concentration are
self-similar beyond about 20 jet exit diameters

(Wilson & Dankwerts’ 1964, Becker et al.® 1967,
Birch et ai.*' 1978, Lockwood & Moneib™® 1980). 1In
cylindrical coordinates with the direction of the

jet discharge chosen to lie along the axis of
symmetry (the x-axis here), the mean profile of
jet gas concentration, for example, takes the
following form:

- C r

Cix,r) = —34— F( ) (1)

X=X, X=X,
where r is the radial coordinate,
concentration at the nozzle exit,
function that is experimentally determined, X, is
the virtual origin, and the overbar denotes a time

average.

C, the jet gas
F is a smooth

t Presently, Senior Specialist Engineer,
Boeing Aerospace, P.O. Box 3999 M/S 8H-29
Seattle, Washington 98124
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While the similarity of the mean profile is
on a solid experimental footing, the picture is
not yet complete. Most experimental data for the
root mean square (rms) fluctuation can not be
collapsed in the same coordinates used to collapse
the mean values. Conflicts also exist between the
reported rms levels from different experiments
(Dahm® 1985). No clear consensus exists as to
whether the ratio of the rms to mean concentration
of the jet fluid (Cipg/C) is a constant in the far
field of the jet (Dahm® 1985). These problems
could arise from many sources including: Reynolds
number effects, contamination of the flow by small
buoyancy forces, insufficient resolution of all of

the fluctuating scales, unsteadiness in the jet
source or the quiescent reservoir, neglect of the
effects of the molecular Schmidt number (kinematic
viscosity divided by species diffusivity), or cthe

possible failure of the chosen similarity form,

Present Experiments

The experiments described here address some
of these concerns in the far-field of the jet.
These experiments were designed with adequate
spatial & temporal resolution, as well as dynamic
range, throughout the jet to unambiguously resolve
all of the diffusion scales in a purely momentum
dominated flow. This meant that the Reynolds
number, nozzle size, jet & reservoir gases and
internal volume of the experimental enclosure were
not chosen independently of each other or of the
noise characteristics of the diagnostic.

This work, an experimental investigation of
mixing of the jet fluid with the entrained
reservoir fluid, is based on measurements of the

instantaneocus concentration of jet fluid, C(t).
In particular, it is a study of the similarity of

the mean concentration of jet fluid, C, the
probability density function of jet fluid
concentration, the rms fluctuation level, Cing.

the power spectrum of concentration fluctuations,
E., the probability density function of the time
derivative of concentration, and some of the
statistical properties of the scalar dissipation
rate, €., as estimated from the square of the time
derivative of concentration.

Experimental Technique

The Main Apparatus

These experiments were performed in the gas
phase jet mixing apparatus shown schematically in
Figure 1. The main apparatus consisted of a large
enclosure with an interior volume of about 120
cubic feet. The jet was produced by a vertically
adjustable ¥," nozzle with an 11 to 1 contraction
ratio. The exit turbulence level was less than
0.2% and the exit Reynolds number (Uod/v_,) was
5000, where v,, is the reservoir gas kinematic
viscosity. The Taylor Reynolds number along the
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Figure 1. Experimental facility.

centerline of the jet was estimated from the
formulae in Hinze™® (1975), Equations S & 6 (see
page 4), and a typical value for the centerline

rms velocity fluctuation, uppg = .zsﬁcl. The
result being: Re) =100 . A uniform coflow
velocity, typically about 0.006 of the jet

produced over the entire 16 ft?
cross section of the enclosure. The wvolume flux
of the coflow was chosen to provide the
entrainment needs of the jet (Ricou & Spalding??
1961) to a point down below the farthest measuring
station. Large 3’ xS’ plexiglas windows were
located on opposite sides of the enclosure to
allow shadowgraph imaging of the jet. The exhaust
gases from the experiment exited through the
becrtom of the enclosure and were collected in a
large plastic bag.

velocity, was

The jet gas was ethylene, C;H‘, and its flow
rate was set with a single stage regulator and a
metering valve. The dynamic head of the jet was
measured to determine U,. The reservoir and
cofiow gas was N;' The coflow was produced by
regulating the pressure of a special delivery
manifold. The density ratio of ethylene to N_ is
1.0015. An axisymmetric laminar boundary layer
calculation was used to estimate boundary layer
thicknesses at the nozzle exit to calculate the
the momentum diameter of the nozzle, d°,
introduced in a limited way by Thring & Newby’®
(1952), used by Avery & Faeth- (1974), and
modified by Dahm & Dimotakis (1987) to:

q* - 2mg
VRPood o

where ﬁo § J, are the nozzle mass and momentum
fluxes respectively, and the density of the
reservoir fluid is denoted by p,. The estimate
for the nozzle conditions of these experiments was
d*=0.96d. Note that the momentum diameter, d”,
reduces to the geometric exit diameter, d, for
Piet = Px and a perfect "top-hat” exit profile of
velocity.

(2)

The Diagnostic

Laser-~Rayleigh scattering was used to
determine the concentration time history of the
binary mixture of jet and reservoir gases within a
small focal volume in the mixing region of the
jet. This non-intrusive diagnostic has been
successfully used by many previous authors (Dyer:°
1979, Escoda & Llong’ 1983, Pitts & Kashiwagi'®
1984, Pitts’’ 1986, and others) and will not be
described here. The main difference between this
work and previous implementations of this
technique was the strict observance of the spatial

and temporal resolution requirements imposed by
the need to accurately record the smallest
estimated diffusion scales of the flow.

For these experiments, the Rayleigh scattered
light from a short section of an 18 wWate
collimated laser beam was imaged (one to one) onto
a small aperture photodiode. The diameter of the
sensitive area of the photodiode was between .20
and 1.0 mm; the local resolution requirements of
the jet dictating the size used in each case. The
signal current from the photodiode was amplified
by a low-noise transimpedance amplifier designed
by Dr. Dan Lang. This signal was filtered and
sent to an LSI PDP~11/73 based computer system
where it was digitized and stored for subsequent
processing. The sampling frequency and filter
bandwidth were chosen to insure that the estimated
remporal resolution regquirements imposed by the
jet were surpassed by more than a factor of four.
The sensitivity of the whole system was calibrated
by introducing pure jet and reservoir gases into
the focal volume before and after each run.

Results

The Mean and RMS Profi{sg

The properly scaled mean and rms
concentration profiles for x/d = 20, 40, 60, & 80
are shown on Figure 2. The transformation used to
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Figure 2. Mear and rms
concentration.

profiles of

profiles is
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collapse both
experimentally

based only on the
values of the virtual




and the decay constant for the mean
centerline concentration. Separate normalizations
by the local centerline mean, centerline rms
concentration, or concentration profile half
radius were not necessary.

crigin, Xg,

Probability Density Function of Concentration

The probability density function for the jet
gas concentration was estimated by sorting the
sampled data into a histogram. The results are
plotted in Figures 3, 5 and display the
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Figure 3. Probability density function
of the scaled concentration on
the centerline of the jet.
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Figure 4. Probability density function

of the scaled concentration
3.5° off the centerline of the
jet.

similarity collapse of the concentration PDF along
the centerline ray (r/{(x-x,) =0}, along a ray at
3.5° (r/(x-x5) = .06), and along a ray at 7°
(r/{x-x5) ~.12). The visual edge of the jet is
at about 12° (White?® 1974). Imperfections in the
collapse, which are more evident as the edge of
the jet is approached, are believed to be caused
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Figure 5. Probability density function
of the scaled concentration 7°
off the centeriine of the jet.
by decreased statistical convergence. In

particular, for a fixed run time, the total volume
of fluid that passes through the focal volume is
roughly proportional to the local mean velocity.
Consequently, the effective sample size of a run
is smaller near the edge of the jet.

Power Spectrum of Concentration Fluctuations

The power spectra of the concentration
fluctuations were calculated from the sampled data

sets for =x/d = 20, 40, 60, & 80 along the three
rays at r/{x-x5) = 0, .06, & .12. The results
are plotted in Figures 6, 7, & 8 where 1
167!
—— x/d = 20
----1/g = 40
AV R - x/d = 60
"&”i -"5}%; g -~ -x/q = 80
- Centerline
%
~4
s 16 f 3
~
S sl 5
I, 10
w
8t
W6
168 i L . N \:\“—1./ ...........
162 16} 10° 10! 102 107 10
i Ty
Figure 6. Scaled power spectra of the
concentration fluctuations on
the centerline of the jet.
(= local jet diameter/local mean centerline

velocity) is the estimated large-scale time of the
jet. The computed spectra satisfy the relation

Y,

[2] ecrrr ae )" « cimg
0

as an overall normalization. The flat portion of
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concentration fluctuations
3.5° off the centerline of the
jet.
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Figure 8. Scaled power spectra of the

concentration fluctuations 7°
off the centerline of the jet.

each spectrum at high frequencies is the noise

floor produced by the measurement technique.

The spectra collapse fairly weil in spite of
the modest Reynolds number of the jet flow. The
calculated value of the Kolmogorov passage
frequency, fyg, should roughly correspond to the
high frequency end of the -5/3 slope when the
molecular Schmidt is of order one (Batchelor?
1959, Monin & Yaglom'’ 1975). To estimate fy, the
foundation of the temporal resolution requirement,
the centerline energy dissipation rate in the jet,
€, reported by Friehe et al.'? (1971), and the
mean centerline velocity decay law suggested by
Chen & Rodi® (1979) were used, i.e.

- Y
£x = oy —?) ¥ 4
Veo
where:
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_ Ul x-x_y)-4
€ =48 = (22X)7Y (s)
d d
- X=-x,\-1
Ucl-G.ZU:(—-‘) . (6)
These formulae and the parameters of the

experiments lead to an estimate for fyg-T, of about
700. while the spectra reported here do not
display a - 5/3 slope, the scaled frequency range
in which they begin to fall more rapidly than a
constant power law is at least an order of
magnitude lower than 700. This discrepancy
between the measured and calculated break points
has also been reported by Clay® (1973) who worked
with data from a heated air jet at a Reynolds
number of almost 109,

It 1is also worth noting that although the
spectra collapse along rays, the spectra are
different from ray to ray. In particular, the

spectra along the ray at 7° show a longer power
law region with a slope closer to ~5/3 than those

from the inner rays. This latter behavior was
also reported by Lockwood & Moneib!® (1980) for
their measurements at x/d =20 in a heated air je:

at a Reynolds number of 50,000.

The Time Derivative of Concentration

The power spectrum of each data set was used
to estimate the optimal (Wiener’® 1949) filter for
that data set (see also Press et al.?! 1986). The
resulting optimal filter was used in each case to
eliminate virtually all of the noise from the
data, permitting a time derivative to be computed
fairly reliably.

The probability density functions of the
scaled time derivative were compiled. The results
are displayed in Figures 9, 10, & 11. The

self-similarity of the data aside, several other
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Figure 9. Probability density function
of the scaled concentration
time derivative on the jet
centerline.
interesting points are noteworthy. All three

curves are asymmetrical with the peaks slightly
off center. One explanation for this is evident
in the time traces of the data, which show many
more large positive slopes than negative ones. 1In




T
o
«
v
™
]
\
*
<
&
n
3
n
w
<
3
>3
o
@
«
Q
o
v
>
3
o

s mas 13 .
RN C e =B / .
/ e T =
- r/ T T - - -
- S T ST - "
R z - - B
z N LT e . Vit
- Lok o - L= - ~ . -
R ST T T T
- - i — -
B - \‘J:\_\’—\\,’\a_. ST = ’
(2030, T S Y T e T )
Figure 10. Probability density function T e e
of the scaled concentration
time derivative 3.5° off the
jet centerline. Figure 12. Time traces of the
instantaneous jet gas
concentration.
scale the time derivative:
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N }
- T3 ) | where D je0 is the diffusivity of jet gas into
- T Tt i i reservoir gas. A plot of the mean estimated
i X : scalar dissipation rate, computed from the data .
- 2 ‘\M ‘ along the three rays at r/{(x-xqo) = .0, .06, & .12,
- . T H : . .
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fact there seems to be a "typical" large scale x St < n
structure associated with the flow that takes the %
form of a sharp rise followed by a region where 0 i i l
the concentration Ifalls choatically, a'r. a lower 00 05 10 15 20
average rate, until the next sharp rise. Some
typical data traces showing this behavior are r/{x-x5) =n
depicted on Figure 12. The large scale time )
corresponding to the plotted data is estimated to Figure 13. Scaled mean wvalue of the
be about 1.3 seconds, or about half each line‘s scalar dissipation rate when
time span. estimated from (dC/dt) ?.

The Estimated Scalar Dissipation Rate

vertical axis is consistent with that suggested by

The scalar dissipation rate is the Friehe et al.'? (1971) for the energy dissipation
instantaneous rate of local mixing of the jet and rate. We note that even though this plot is
reservoir gases. By squaring and scaling the severely leveraged by a factor of (x-xo)', the .
concentration time derivative an estimate of the collapse is acceptable, especially since the data
scalar dissipation rate, €., can be made. Here we at x/d = 20 may be contaminated by near-field
have used only the mean centerline velocity to effects.
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at high
Obukhov " ?

theories of turbulence
Reynolds number (Kolmogorov:-*' 1962,

1962) predict that the probability density
function of (dC/dt)? should be log-normal. The
current data are at a mcdest Reynolds number so

Classical

they can, at most, provide a test to determine the
lower Reynolds number limit of sSome of the
classical ideas. A lcg-normal distribution is
Gaussian when plotted verses a logarithnic
abscissa and a linear ordinate. The scaled
results of these experiments for (dC/dt)? are
plotted in such log-linear coordinates on Figures
14, 15, and 16 for x/d = 20, 40, 60, & 80 along
2 f’\ -
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Figure 14. Probability density function
of the logarithm of ({(dC/dt)?
on the jet centerline.
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Figure 15. Probability density function
of the logarithm of (dC/dt)?
3.5° off the jet centerline.
the three rays at r/(x-x,) = 0, .06, & .12. The

compiled curves look approximately Gaussian but
all display a relative excess at low values and a
relative deficit at high values. It is also worth
noting that the full width at half maximum of the
distributions is typically 3 or more orders of
magnitude. To the extent thst (dC/dt)? scales the
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Figure 16. Probability density function
of the logarithm of (dC/dt)?
7° off the jet centerline.
local mixing rate, this result has important
implications for the description and modeling of
turbulent mixing, with or without chemical
reactions and combustion.
Conclusions

Figures 2 through 16 make a compelling case
complete similarity of the mixing at all
scales in the far-field of a momentum driven jet.
These plots establish that the local mean
concentration and the local large-scale time can
be used to collapse the statistical measures of
the fluctuating concentration field of the jet at
a Reynolds number of 5000. Qur most recent
experiments (see Dowling® 1988) suggest that this
self-similarity extends to higher Reynolds
numbers. Additionally, the measurements presented
in this paper show that some of the classical
theories of turbulence can be applied at Reynolds
numbers which might not be considered high enough
for the flow to have reached a Reynolds number
independent state.
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